• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 24
  • 12
  • 7
  • 6
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 70
  • 23
  • 21
  • 19
  • 19
  • 18
  • 17
  • 15
  • 13
  • 13
  • 11
  • 11
  • 11
  • 11
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Fundamental water and ion transport characterization of sulfonated polysulfone desalination materials

Cook, Joseph Reuben 24 October 2014 (has links)
Sulfonated polysulfones BisAS and BPS were fabricated into dense polymer films, and their water and ion transport properties were systematically characterized. Fundamental NaCl and water transport properties were correlated with polymer chemistry, and water and NaCl permeability were found to increase with degree of sulfonation due to the increasing polymer water content. The BisAS backbone structure was found to result in greater water uptake, increasing water and salt permeability, though the polysulfones show evidence of sensitivity to the thermal casting process as well. Additionally, water and ion permeability and sorption values were determined for select polymers when exposed to a feed consisting of mixtures of monovalent and divalent cation salts. The divalent cations were found to sorb into the polymer much more favorably than the monovalent sodium, similarly to charged materials found in the literature. The sodium permeability of sulfonated polysulfones was found to increase in the presence of divalent cations by ratios of 2 to 5 times more than when exposed to an equivalent increase in feed charge concentration of monovalent cations. It has been hypothesized the more strongly charged divalent cations are neutralizing the sulfonate charges and suppressing Donnan exclusionary effects that reduce salt transport in charged polymers. / text
2

Electrochemistry of calixarene derivatives : applications in electroanalysis and surface functionalisation

Pailleret, Alain January 2002 (has links)
No description available.
3

Rheology of Oligomeric Sulfonated Polystyrene Ionomers

Huang, Chongwen January 2016 (has links)
No description available.
4

Poly(arylene ether sulfone)s Carrying Pendant(3-sulfonated) phenyl sulfonyl Groups for use as Proton Exchange Membranes

Kern, Kimberly E. 23 June 2011 (has links)
No description available.
5

Membranas protônicas à base de polindeno sulfonado e poli(fluoreto de vinilideno) para célula a combustível

Dei Agnoli, Raquel January 2016 (has links)
Membranas à base de polímeros perfluorosulfonados, como a Nafion, vêm sendo extensivamente usadas como membrana de troca protônica em células a combustível (FC). O objetivo deste trabalho foi desenvolver membranas eletrólito à base de polindeno sulfonado (SPInd) e poli(fluoreto de vinilideno) (PVDF), para uso como membranas de troca protônica em condições semelhantes às da membrana Nafion. As membranas foram preparadas por casting em diferentes composições utilizando PVDF como reforço mecânico e PVDF sulfonado (SPVDF) como agente compatibilizante. Todas as membranas foram avaliadas por análise termogravimétrica, calorimetria exploratória diferencial, análise dinâmico mecânica, microscopia eletrônica de varredura, grau de inchamento, capacidade de troca iônica e espectroscopia de impedância eletroquímica. As membranas com características semelhantes à membrana Nafion foram avaliadas em protótipo de FC a 80 °C. A membrana SPInd50/PVDF e as membranas com agente compatibilizante apresentaram condutividades iônicas na ordem de 10-2 S/cm, comparáveis àquela da membrana Nafion. A membrana com melhor desempenho em protótipo de FC foi o SPInd/PVDFC12, preparado com 50% de SPInd, 47,5% de PVDF e 2,5% de SPVDF (p/p), cujos valores de potencial de circuito aberto e densidade de potência máximo foram de 1,02 V e 74,54 mW/cm2, respectivamente. Apesar da densidade de potência máxima ser inferior à da membrana Nafion (603 mW/cm2), a membrana SPInd/PVDFC12 apresenta potencial para uso como eletrólito em célula a combustível. / Perfluorosulfonic acid ionomer membranes, e.g. Nafion, have been extensively used as proton exchange membranes in fuel cells (FC) due to their high proton conductivity and good mechanical properties. The aim of this work was to develop electrolyte membranes based on sulfonated polyindene (SPInd) and poly(vinylidene fluoride) (PVDF) to be used in the same conditions as Nafion. Membranes were prepared by casting with different compositions using PVDF as mechanical reinforcement and sulfonated PVDF (SPVDF) as coupling agent. The produced membranes were evaluated by thermogravimetric analysis, differential scanning calorimetry, and dynamic mechanical analysis, scanning electron microscopy, water uptake, ion exchange capacity and electrochemical impedance spectroscopy. The membranes with similar results to Nafion, were evaluated in a FC prototype at 80 °C. The membrane SPInd50/PVDF and all the membranes with coupling agent had ionic conductivity in the order of 10-2 S/cm, comparable to the Nafion´s. The polyelectrolyte with the best performance was the SPInd/PVDFC12 which was prepared with 50 wt% SPInd, 47.5 wt% PVDF and 2.5 wt% SPVDF, that reached an open circuit voltage of 1.02 V and maximum power density of 74.54 mW/cm2. Even though Nafion´s maximum power density was higher (603 mW/cm2), the SPInd/PVDFC12 membrane showed potential to be used as electrolyte in fuel cells.
6

Membranas protônicas à base de polindeno sulfonado e poli(fluoreto de vinilideno) para célula a combustível

Dei Agnoli, Raquel January 2016 (has links)
Membranas à base de polímeros perfluorosulfonados, como a Nafion, vêm sendo extensivamente usadas como membrana de troca protônica em células a combustível (FC). O objetivo deste trabalho foi desenvolver membranas eletrólito à base de polindeno sulfonado (SPInd) e poli(fluoreto de vinilideno) (PVDF), para uso como membranas de troca protônica em condições semelhantes às da membrana Nafion. As membranas foram preparadas por casting em diferentes composições utilizando PVDF como reforço mecânico e PVDF sulfonado (SPVDF) como agente compatibilizante. Todas as membranas foram avaliadas por análise termogravimétrica, calorimetria exploratória diferencial, análise dinâmico mecânica, microscopia eletrônica de varredura, grau de inchamento, capacidade de troca iônica e espectroscopia de impedância eletroquímica. As membranas com características semelhantes à membrana Nafion foram avaliadas em protótipo de FC a 80 °C. A membrana SPInd50/PVDF e as membranas com agente compatibilizante apresentaram condutividades iônicas na ordem de 10-2 S/cm, comparáveis àquela da membrana Nafion. A membrana com melhor desempenho em protótipo de FC foi o SPInd/PVDFC12, preparado com 50% de SPInd, 47,5% de PVDF e 2,5% de SPVDF (p/p), cujos valores de potencial de circuito aberto e densidade de potência máximo foram de 1,02 V e 74,54 mW/cm2, respectivamente. Apesar da densidade de potência máxima ser inferior à da membrana Nafion (603 mW/cm2), a membrana SPInd/PVDFC12 apresenta potencial para uso como eletrólito em célula a combustível. / Perfluorosulfonic acid ionomer membranes, e.g. Nafion, have been extensively used as proton exchange membranes in fuel cells (FC) due to their high proton conductivity and good mechanical properties. The aim of this work was to develop electrolyte membranes based on sulfonated polyindene (SPInd) and poly(vinylidene fluoride) (PVDF) to be used in the same conditions as Nafion. Membranes were prepared by casting with different compositions using PVDF as mechanical reinforcement and sulfonated PVDF (SPVDF) as coupling agent. The produced membranes were evaluated by thermogravimetric analysis, differential scanning calorimetry, and dynamic mechanical analysis, scanning electron microscopy, water uptake, ion exchange capacity and electrochemical impedance spectroscopy. The membranes with similar results to Nafion, were evaluated in a FC prototype at 80 °C. The membrane SPInd50/PVDF and all the membranes with coupling agent had ionic conductivity in the order of 10-2 S/cm, comparable to the Nafion´s. The polyelectrolyte with the best performance was the SPInd/PVDFC12 which was prepared with 50 wt% SPInd, 47.5 wt% PVDF and 2.5 wt% SPVDF, that reached an open circuit voltage of 1.02 V and maximum power density of 74.54 mW/cm2. Even though Nafion´s maximum power density was higher (603 mW/cm2), the SPInd/PVDFC12 membrane showed potential to be used as electrolyte in fuel cells.
7

Membranas protônicas à base de polindeno sulfonado e poli(fluoreto de vinilideno) para célula a combustível

Dei Agnoli, Raquel January 2016 (has links)
Membranas à base de polímeros perfluorosulfonados, como a Nafion, vêm sendo extensivamente usadas como membrana de troca protônica em células a combustível (FC). O objetivo deste trabalho foi desenvolver membranas eletrólito à base de polindeno sulfonado (SPInd) e poli(fluoreto de vinilideno) (PVDF), para uso como membranas de troca protônica em condições semelhantes às da membrana Nafion. As membranas foram preparadas por casting em diferentes composições utilizando PVDF como reforço mecânico e PVDF sulfonado (SPVDF) como agente compatibilizante. Todas as membranas foram avaliadas por análise termogravimétrica, calorimetria exploratória diferencial, análise dinâmico mecânica, microscopia eletrônica de varredura, grau de inchamento, capacidade de troca iônica e espectroscopia de impedância eletroquímica. As membranas com características semelhantes à membrana Nafion foram avaliadas em protótipo de FC a 80 °C. A membrana SPInd50/PVDF e as membranas com agente compatibilizante apresentaram condutividades iônicas na ordem de 10-2 S/cm, comparáveis àquela da membrana Nafion. A membrana com melhor desempenho em protótipo de FC foi o SPInd/PVDFC12, preparado com 50% de SPInd, 47,5% de PVDF e 2,5% de SPVDF (p/p), cujos valores de potencial de circuito aberto e densidade de potência máximo foram de 1,02 V e 74,54 mW/cm2, respectivamente. Apesar da densidade de potência máxima ser inferior à da membrana Nafion (603 mW/cm2), a membrana SPInd/PVDFC12 apresenta potencial para uso como eletrólito em célula a combustível. / Perfluorosulfonic acid ionomer membranes, e.g. Nafion, have been extensively used as proton exchange membranes in fuel cells (FC) due to their high proton conductivity and good mechanical properties. The aim of this work was to develop electrolyte membranes based on sulfonated polyindene (SPInd) and poly(vinylidene fluoride) (PVDF) to be used in the same conditions as Nafion. Membranes were prepared by casting with different compositions using PVDF as mechanical reinforcement and sulfonated PVDF (SPVDF) as coupling agent. The produced membranes were evaluated by thermogravimetric analysis, differential scanning calorimetry, and dynamic mechanical analysis, scanning electron microscopy, water uptake, ion exchange capacity and electrochemical impedance spectroscopy. The membranes with similar results to Nafion, were evaluated in a FC prototype at 80 °C. The membrane SPInd50/PVDF and all the membranes with coupling agent had ionic conductivity in the order of 10-2 S/cm, comparable to the Nafion´s. The polyelectrolyte with the best performance was the SPInd/PVDFC12 which was prepared with 50 wt% SPInd, 47.5 wt% PVDF and 2.5 wt% SPVDF, that reached an open circuit voltage of 1.02 V and maximum power density of 74.54 mW/cm2. Even though Nafion´s maximum power density was higher (603 mW/cm2), the SPInd/PVDFC12 membrane showed potential to be used as electrolyte in fuel cells.
8

Synthesis and Characterization of Sulfonated Polyimides as Proton Exchange Membranes for Fuel Cells

Gunduz, Nazan 26 April 2001 (has links)
Series of homo- and copolyimides containing controlled degrees of sulfonic acid ion conducting pendant groups have been synthesized from both phthalic (five-) and naphthalic (six-membered) dianhydrides and appropriate wholly aromatic diamines and heterocyclic analogues. The goal is to identify thermally and hydrolytically stable ion conducting polymers (ICP) suitable as proton exchange membranes, PEM, for fuel cells. The candidate ICP's have been synthesized and characterized for molecular weight, chemical composition, film forming properties, thermal transition behavior, boiling water stability, solvent solubility and water absorption and conductivity. Commercially available five-membered ring dianhydrides such as 6FDA, BPDA, and six-membered ring dianhydrides such as naphthalene tetracarboxylic dianhydride (NDA) have been used. High molecular weight five-membered ring polyimides were obtained from an equimolar ratio of diamines and dianhydride using a one-pot ester-acid procedure by initially converting the dianhydride to a diester-diacid derivative, followed by the reaction with sulfonated and unsulfonated aryl diamines. The sulfonated diamine monomer was allowed to oligomerize with the diester-diacid of the dianhydride for 2-3 hours, before unsulfonated diamine was charged into the reaction flask. The levels of sulfonation in the polymer backbones were controlled by varying the mole ratio of sulfonated diamine to unsulfonated diamine. For the six-membered ring polyimides, phenolic solvents, e.g. m-cresol, have been used. In general, 4,4′-diamino-biphenyl-2,2′-disulfonic acid (DPS) has been employed as the source of the sulfonated unit. The chemical compositions of both sulfonated and unsulfonated polyimides were obtained using ¹H-NMR and FT-IR. The sulfonic acid contents in both diamine monomers, as well as the sulfonated polyimides were also analyzed by acid-base potentiometric titration. In all cases, high inherent viscosity values and good film forming ability of the polymers were the key indications of high molecular weight. The viscosity values increased with an increase of sulfonation degree in the polymers. This increase of viscosity in these ionomers can be attributed to the increase of polymer chain aggregation with their increasing ionic character. Polymers were fabricated into membranes via solution casting or spin casting from DMAc or m-cresol in order to study film-forming properties. The solution cast dry films of the sulfonated polyimide membranes gave tough, ductile membranes and demonstrated moderate to high water absorption, which is necessary for PEM fuel cells. However, swollen films, in general, showed poor hydrolytic stability which resulted in brittle membranes. The solution-cast membranes were thermally analyzed to study the effect of the degree of sulfonation on the thermal properties of sulfonated polymers. All the thermograms of the sulfonated polyimide films exhibited a two-step degradation behavior. The first weight loss, observed between 300-400 °C, corresponds to desulfonation in the sulfonated block, and the second weight loss, observed for a temperature around 500 °C or above, corresponds to the polymer backbone degradation. The TGA thermograms indicated that the initial weight losses were steeper for polymers with higher sulfonation degrees. Furthermore, the weight loss temperature of sulfonated polyimides decreased and broadened with increasing sulfonation levels. However, the onset temperature of the first weight loss was independent of the degree of sulfonation. Weight loss data in TGA curves of the sulfonated polymers were used to calculate the degree of sulfonation. Experimental and theoretical values were in good agreement with each other. The sulfonated five-membered polyimide membranes were aged in an air-oven at increasing temperatures (30-220 °C) for 30 min and then titrated with TMAH using non-aqueous potentiometric titration. All the films that were aged up to 220 °C were still completely soluble in DMAc. Moreover, the sulfonic acid groups were unchanged. In addition, several new flexible sulfonated and unsulfonated diamines and bis(naphthalic anhydride) monomers containing phosphineoxide [-P(O)-] or sulfone [-S(O)₂ -] moieties in their structure have been synthesized and characterized with various analytical techniques. The structural design of naphthalic polyimides by incorporating bis(naphthalic anhydrides) was one approach to give a better solubility and processability of their related products. Development of an iterative approach for defining the optimum degree of sulfonation that will produce the highest ionic conductivity while still retaining other important properties such as flexibility, strength, hydrolytic stability has been a goal of this research and will be discussed in the thesis. / Ph. D.
9

Nouveaux systèmes catalytiques hétérogénéisés pour la synthèse d'esters d'isosorbide par hydroestérification / New heterogenized catalytic systems for the synthesis of isosorbide esters by hydroesterification

Boulanger, Jérôme 16 July 2014 (has links)
Des complexes à base de palladium (II) ont été appliqués comme catalyseurs pour la réaction d’hydroestérification de l’isosorbide, matériau biosourcé, avec le 1-octène. Dans un premier temps, l’utilisation de liquides ioniques standards a permis l’immobilisation du catalyseur (palladium + phosphine) et la conversion du 1-octène. L’activité catalytique est dépendante de la nature du liquide ionique. Le liquide ionique sulfoné bSmimAPTS a permis l’obtention de conversions élevées, avec des rendements en diesters importants sur trois cycles catalytiques tout en s’affranchissant de l’emploi d’acide paratoluènesulfonique. Le catalyseur (palladium + phosphine sulfonée) est immobilisé dans la phase liquide ionique. La régiosélectivité de la réaction peut être modifiée (85/15 contre 75/25 dans les conditions classiques) avec le remplacement de la TPPTS par une phosphine bidentate sulfonée (XANTPHOS sulfonée). Un système constitué de Pd(OAc)2/APTS/NBu4Br s’est également montré très efficace dans la conversion du 1-octène en diester d’isosorbide mais n’est pas très stable dans le temps (recyclé à deux reprises). Dans un second temps, l’utilisation de charbons actifs commerciaux a permis d’immobiliser le métal (après filtration à froid) tout en conservant une activité catalytique élevée. Il est possible de convertir le 1-octène en substituant l’APTS par un matériau carboné sulfoné (obtenu par voie hydrothermale en une étape entre le saccharose et l’acide sulfurique). Les synthèses, caractérisations et applications d’un matériau carboné nanorépliqué sulfoné de type CMK-3 ont été considérées. Le matériau carboné sulfoné (MC-NR-saccharose-500-SO3H) a permis l’obtention de conversions et de rendements en diesters élevés, avec une sélectivité en large faveur de l’isomère linéaire (rapport l/b=92/8). Une extension à été étudiée avec la synthèse d’un matériau hybride sulfoné (MCSi 10.4-SO3H) et a également conduit à une activité catalytique élevée avec une sélectivité importante en isomère linéaire (rapport l/b=92/8). Des tests avec des matériaux acides contrôles (résine commerciale sulfonée et silice sulfonée) ont été réalisés. / Complex based on palladium salt (II) were applied as catalysts for the hydroesterification of isosorbide, a biobased molecule, with 1-octen. First, the use of standard ionic liquids permits the immobilization of the catalyst (palladium + phosphine) and the conversion of 1-octen. The catalytic activity is dependent on the nature of the ionic liquid. The sulfonated ionic liquid bSmimAPTS permit the obtention of high conversions, with important yield in diester during three catalytic cycles, and avoid the use of paratoluenesulfonic acid. The catalyst (palladium + sulfonated phopshine) is immobilized in the ionic liquid phase. The regioselctivity of the reaction can be changed with the replacement of the TPPTS by a sulfonated bidentate phosphine (XANTPHOS, l/b ratio= 85/15 against 75/25 in classical condition). A system containing Pd(OAc)2/APTS/NBu4Br proved also highly effective in the conversion of 1-octen but it was not very stable over time (recycled just two times). Secondly, the use of commercial activated carbons has immobilized the palladium after cold filtration while maintaining high catalytic activity. It’s possible to convert the 1-octen using a sulfonted carbonaceous material (obtained by hydrothermally condition in one step between sucrose en sulfuric acid). Synthesis, characterization and applications of a sulfonated nanoreplicated carbonaceous material, as CMK-3, were considered. This one (MC-NR-saccharose-500(SO3H) permit the obtention of high conversions and high yields of diesters, with a selectivity in favor of the linear isomer (l/b ratio= 92/8). An extension was studied with the synthesis of a sulfonated hybrid material (MCSi 10.4-SO3H) and also results in high conversion and high selectivity in linear isomer (l/b ratio= 92/8). Tests with acidics materials controls (sulfonated commercial resin and sulfonated silica) were performed.
10

The Sulfonated Poly(arylene ether)s for Fuel Cell

Wu, Sheng-feng 06 September 2010 (has links)
PEM (Proton Exchange Membrane) fuel cell is one of the most important green energy, because it has high energy density, lifetime, small and light.etc advantages. Nafion , the major material for PEM now, However, has some disadvantages such as high cost ($600¡V1000/m2) and limited choices for operation temperature about 25¢J~80¢J. Consequently, there is an increasing interest in the development of alternative ionomer membranes with lower cost, and higher proton conductivity, and that are more easily processed. Here we present polymeric membranes made of sulfonic Poly(arylene ether)s (PAEs) which is achieved by nucleophilic displacement reactions of dihalo or dinitro compounds with alkali metal bisphenolates and direct polymer sulfonation was carried out in heterogeneous media using chlorosulfonic acid as both solvent and sulfonating agent. In our PAEs which has high Tg values about 225¡ã250¢XC depends on the barriers to rotation along the main polymer chain. And weight losses above 500 ¢XC by thermogravimetric (TGA) analysis, indicative of their high thermal stability. After FTIR analysis we preparation sulfonated polymer successfully by using chlorosulfonic acid as sulfonating agent. Thermogravimetric analysis (TGA) studies were carried out to investigate the thermal stability of sulfonated PAEs (Td≈ 500¢XC). The proton conductivity of polymer s(DFB+M3) sulfonated with chlorosulfonic acid about 10-6¡ã10-7S cm-1 .Compared with Nafion membrane measured in the same condition, the conductivity of our membrane is smaller than 3~4 order. In the future, it is possible to improve the conductivity of our membrane with optimization.

Page generated in 0.0938 seconds