• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 24
  • 12
  • 7
  • 6
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 70
  • 23
  • 21
  • 19
  • 19
  • 18
  • 17
  • 15
  • 13
  • 13
  • 11
  • 11
  • 11
  • 11
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Structure-Property Relationships in the Design of High Performance Membranes for Water Desalination, Specifically Reverse Osmosis, Using Sulfonated Poly(Arylene Ether Sulfone)s

Kazerooni, Dana Abraham 19 January 2022 (has links)
Over 30% of the world's population does not have access to safe drinking water, and the need for clean water spans further than just for human consumption. Currently, we use freshwater for growing agriculture, raising livestock, generating power, sanitizing waste, mining resources, and fabricating consumer goods. With that being said, the world is beginning to feel pressure from the excessive freshwater withdrawal compared to the current freshwater supply. This water stress is causing a water crisis. Places including Australia, South Africa, and California in the United States, just to name a few, are beginning to run out of fresh water to support daily societal demands. This is a phenomenon that is indiscriminately observed in all ranges of economically and politically developed countries and environments. However, it is important to note that less politically and economically developed countries especially those in arid climates, experience higher water stress than countries without such qualities. With only 2.5% of the world's water being freshwater and 30% of it being accessible as either ground or surface water, freshwater is a scarce resource, especially with the growing population and society's demand for water. Since the remaining 97.5% of water is composed of either brackish or seawater (saline water sources), one way to overcome the water stress would be to convert saline water into freshwater. As a result, various desalination techniques have been developed in the last 80 years that employ either membrane technology or temperature alterations to desalinate either brackish or seawater. One of the fastest growing methods for producing freshwater is reverse osmosis. Reverse osmosis uses an externally applied pressure, in the form of a cross flow back pressure, to overcome the osmotic pressure produced by the saline gradient across a semi-permeable membrane. The semi permeable membrane commercially consists of an interfacially polymerized aromatic polyamide thin film composite with a polysulfone porous backing that allows water to pass through while barring the transport of salt ions. This research focuses on the development of sulfonated poly(arylene ether sulfone) derivatives with differing amounts of sulfonation and with the ions placed at different structural positions. Previously, such materials were tested as potential high performance fuel cell membranes, but they are also of interest as potential high performance water desalination membranes, specifically for reverse osmosis. Two different methods were used to synthesize the sulfonated polysulfone derivatives: direct polymerization and post-modification of a non-sulfonated active polysulfone. The polysulfones from direct polymerization incorporated specialty sulfonated monomers, which were stoichiometrically controlled during the polymerization. Sulfonated polysulfones that were synthesized from post sulfonation incorporated biphenol and hydroquinone monomer units randomly throughout the polysufone backbones. These units could be sulfonated selectively because of their activation towards electrophilic aromatic substitution with sulfuric acid. Each of the polymers were cast into films ranging between 20-100 microns in thickness and tested for water uptake, hydrated uniaxial tensile properties, crossflow water and salt transport properties, and for crosslinked samples, gel fractions. The water uptakes from all the polysulfones were tuned by the degree of sulfonation or disulfonation present in the polymer. This was either controlled via the presence of a sulfonated monomer or a monomer that was active toward electrophilic aromatic substitution after polycondensation of the polysulfone. All polymers exhibited increases in their water uptake as the degree of sulfonation increased. We also observed a decreasing trend in the hydrated mechanical properties of the films for all the high molecular weight linear polymers as the water uptake was increased. The directly polymerized sulfonated polysulfones were found to have high hydrated elastic moduli ranging between 400 and 1000 MPa, while the post sulfonated counterparts (with either hydroquinone or biphenol incorporated in their structures) exhibited elastic moduli ranging between 1000 and 1500 MPa. It is important to note that the structures of the polymers were slightly different from one another because of the technique used to synthesize them. Thus, the increases in hydrated moduli among polymers synthesized via different routes may have influences from differences in chemical structures. Some of the polymers with higher degrees of sulfonation were synthesized as amine terminated oligomers with varying controlled molecular weights. The two targeted molecular weights were 5 and 10 kDa. Those oligomers were then crosslinked with a tetra-functional epoxide agent. The increases in sulfonation allowed for increases in water uptake and in theory, the water throughput through the sulfonated polysulfone membrane. Decreases in hydrated mechanical performance of the crosslinked networks with increasing degrees of sulfonation were also observed, similar to their high molecular weight linear counterparts. The directly polymerized crosslinked networks had salt permeabilities that plateaued at 70% disulfonation for both the 5 and 10 kDa polymers. Thus, we expect disulfonation content greater than 70% would lead to higher water throughput without significant increases in salt transport. / Doctor of Philosophy / A worldwide shortage of freshwater is becoming more problematic by each passing day. The World Health Organization and the United Nation's World Water Assessment Program predict that by 2025, 50-66% of the world's population will be living in a water-stressed area. This includes any area that experiences higher clean water withdrawals than are available. This includes but is not limited to areas that are politically unstable, technologically disadvantaged, resource deficient, located in arid climates, and highly populated. To put this further into perspective, only 2.5% of the available water on earth is freshwater. Freshwater typically has low concentrations of dissolved salts that are safe for human consumption and use. Of the available freshwater, only 30% of it is actually accessible for use through either surface or groundwater reservoirs, making the amount of clean water available for usage already a scarce resource. On the other hand, 97.5% of the world's water is composed of saline water reservoirs in the form of brackish and seawater. Through harnessing, seawater and removing the excess dissolved salt ions, the salt water can be converted to freshwater. Two major methods have been developed to remove the dissolved ions from water through either membrane filtration or thermal phase changes. One of the fastest growing membrane filtration techniques used worldwide is reverse osmosis. Reverse osmosis refers to the use of applied pressure across a semipermeable membrane to desalinate saline water. The semipermeable membrane prevents the migration of salt ions through the membrane while allowing transport of water. This work has focused on developing new polymers that can increase the overall efficiency of water desalination. Different types of high performance sulfonated polysulfone derivative polymers were synthesized and used to make membranes that were subsequently tested for performance. Relationships between the polymer structure, process, and properties were quantified through different analytical techniques. This study showed how the properties of sulfonated polysulfone membranes may be manipulated depending on structural modifications and processing to increase both the material's water throughput and salt rejection.
32

Synthesis and Characterization of Linear and Crosslinked  Mono-Sulfonated Poly(arylene ether sulfone)s for  Reverse Osmosis Applications

Schumacher, Trevor Ignatius 21 January 2020 (has links)
Sulfonated poly(arylene ether sulfone)s can exhibit several ideal features as potential desalination membranes for reverse osmosis applications, including chlorine resistance, low surface fouling, and high water flux. However, this class of polymer membranes has suffered from two major drawbacks that jeopardize effective levels of salt rejection in order to achieve high water flux. In mixed salt feed sources, monovalent salt rejection decreases when divalent cations such as Ca2+ bind with the anionic sulfonate groups to cause charge screening, and this can lead to too much salt passage for the membranes to be competitive with interfacially produced polyamides. Sulfonate fixed charge concentration must be high enough for sufficient membrane water uptake to obtain high membrane water flux, but if the water uptake is too high, this permits increased salt passage. The research described in this dissertation attempts to address both of these challenges through the design of a sulfonated monomer that strategically spaces the ionic groups along the polymer backbone chains to inhibit divalent ion binding. Free radical crosslinking further tunes the hydrated free volume in the RO membranes. A mono-sulfonated comonomer, sodium 3-sulfonate-4,4'-dichlorodiphenylsulfone (ms-DCDPS), was synthesized by stoichiometrically controlled electrophilic aromatic sulfonation of 4,4'-dichlorodiphenylsulfone (DCDPS). HPLC-UV revealed complete isolation of ms-DCDPS free of by-products after the 1st recrystallization and 1H NMR analysis confirmed the structure. A standard calibration curve was developed to accurately determine the leftover quantity of excess NaCl that was used for precipitation during the work-up procedures. A series of linear sulfonated poly(arylene ether sulfone)s with varying ms-DCDPS incorporation was synthesized. 1H NMR confirmed the structure of the polymers and size-exclusion chromatography confirmed that the intended molecular weights were achieved. The copolymers were cast into dense films and the mechanical and transport properties were measured in their fully hydrated states. Tensile tests revealed mechanically robust, tough membranes with glassy elastic moduli and high strains at break. The dense membrane prepared from sulfonated poly(arylene ether sulfone) with 51% of the repeat units sulfonated had NaCl rejection = 99.3% measured at 400 psi and 2000 ppm NaCl with a water permeability coefficient of 0.57 x 10-6 cm2/s. The salt rejection remained greater than 99% when a mixed salt feed source containing Ca2+ in the 0-200 ppm range together with the 2000 ppm NaCl was introduced. Crosslinked mono-sulfonated oligomers were synthesized with targeted molecular weights by utilizing stoichiometric quantities of monomers with the desired degrees of sulfonation, and the endgroups were functionalized with tetrafluorostryene. These end-functionalized sulfonated oligomers were crosslinked by both thermal and UV free radical methods in the presence of initiators without any additional crosslinking agents. Reaction conditions were thoroughly investigated and optimized to produce highly crosslinked membranes that yielded gel fractions greater than 87%, as measured by solvent extraction in dimethylacetamide. The hydrated crosslinked membranes were tested for both mechanical and transport properties, and the results were compared to their linear membrane counterparts. Crosslinking decreased the hydrated free volume and reduced water uptakes when compared to linear sulfonated membranes. Tensile tests of the fully hydrated crosslinked membranes showed good mechanical properties. The transport properties of a dense UV crosslinked membrane prepared with a 10,000 g/mol oligomer having 50% of the repeat units sulfonated was tested under RO cross-flow conditions at 400 psi and 2000 ppm NaCl in the feed. The membrane demonstrated a salt rejection = 98.4% with a water permeability coefficient of 0.49 x 10-6 cm2/s. / Doctor of Philosophy / Billions of individuals across the world lack clean, affordable drinking water, and the unavailability of fresh drinking water can be attributed to both physical and economic reasons. Several techniques have been utilized to produce potable water for human consumption that include both water desalination and recycling procedures. Water desalination is a process that allows for purifying salt contaminated water into drinking water. The two major desalination processes involve either distillation or passage through polymer membranes. Distillation separates water from salt by heating liquid water to form a gas, and collecting the vapor as condensate while impurities remain in the heated bulk material. Polymer membranes separate impurities through filtration where membranes allow water to pass through a physical barrier while rejecting the unwanted contaminants, including salt. Reverse osmosis desalination is the most common membrane separation process. Reverse osmosis membranes are comprised of either short-chain crosslinked oligomers or long-chain linear polymers. Commercial reverse osmosis membranes are largely poly(amide)s where a thin film is formed in an interfacial reaction. The membranes allow for almost quantitative salt rejection with high water fluxes. But, these membranes degrade over time from periodic cleaning with chlorine disinfectants. This dissertation primarily focuses on the implementation of an alternative polymer membrane material known as a mono-sulfonated polysulfone that strategically distributes the fixed sulfonate charged groups along the polymer backbone. Theses reverse osmosis mono-sulfonated polysulfones display comparable salt rejection with better chemical resistance than commercial poly(amide)-based membranes, and could potentially offer a replacement in the market.
33

Morphological and Structure-Property Analyses of Poly(arylene ether sulfone)-Based Random and Multiblock Copolymers for Fuel Cells

Badami, Anand Shreyans 04 December 2007 (has links)
The commercialization of proton exchange membrane (PEM) fuel cells depends largely upon the development of PEMs whose properties are enhanced over current perfluorinated sulfonic acid PEMs. Understanding how a PEM's molecular weight and morphology affect its relevant performance properties is essential to this effort. Changes in molecular weight were found to have little effect on the phase separated morphologies, water uptake, and proton conductivities of random copolymers. Changes in block length, however, have a pronounced effect on multiblock copolymers, affecting surface and bulk morphologies, water uptake, proton conductivity, and hydrolytic stability, suggesting that multiblock copolymer PEM properties may be optimized by changes in morphology. A major goal of current proton exchange membrane fuel cell research involves developing high temperature membranes that can operate at ~120 °C and low humidites. Multiblock copolymers synthesized from 100% disulfonated poly(arylene ether sulfone) (BPSH100) and naphthalene polyimide (PI) oligomers may be an alternative. At block lengths of ~15 kg/mol they displayed no morphological changes up to 120 °C or even higher. Water desorption was observed to decrease with increasing block length. The copolymers exhibited little to no water loss during a 200 °C isotherm in contrast to random BPSH copolymers and Nafion. A BPSH100-PI multiblock copolymer with large block length appears to have morphological stability and retain water at temperatures exceeding 120 °C, suggesting its candidacy as a high temperature PEM. A growing number of alternative PEM research efforts involve multiblock copolymer chemistries, but little emphasis is placed on the methods used to couple the oligomers. Fluorinated linkage groups can help increase block efficiency during coupling, but their effect on a PEM is not well-known. The choice of linkage type, hexafluorobenzene (HFB) vs. decafluorobiphenyl (DFBP), appears to have small but observable influences on multiblock copolymers with disulfonated and unsulfonated poly(arylene ether sulfone) oligomers. DFBP linkages promote greater phase separation than HFB linkages, resulting in increased stiffness, decreased ductility, and increased proton conductivity at low humidities. DFBP linkages also promote more surface enrichment of fluorine, causing changes in surface morphology and slightly increased water desorption, but determining the impact on actual fuel cell performance requires further research. / Ph. D.
34

High Temperature Polymers for Proton Exchange Membrane Fuel Cells

Einsla, Brian Russel 27 April 2005 (has links)
Novel proton exchange membranes (PEMs) were investigated that show potential for operating at higher temperatures in both direct methanol (DMFC) and H2/air PEM fuel cells. The need for thermally stable polymers immediately suggests the possibility of heterocyclic polymers bearing appropriate ion conducting sites. Accordingly, monomers and random disulfonated poly(arylene ether) copolymers containing either naphthalimide, benzoxazole or benzimidazole moieties were synthesized via direct copolymerization. The ion exchange capacity (IEC) was varied by simply changing the ratio of disulfonated monomer to nonsulfonated monomer in the copolymerization step. Water uptake and proton conductivity of cast membranes increased with IEC. The water uptake of these heterocyclic copolymers was lower than that of comparable disulfonated poly(arylene ether) systems, which is a desirable improvement for PEMs. Membrane electrode assemblies were prepared and the initial fuel cell performance of the disulfonated polyimide and polybenzoxazole (PBO) copolymers was very promising at 80 C compared to the state-of-the-art PEM (Nafion®); nevertheless these membranes became brittle under operating conditions. Several series of poly(arylene ether)s based on disodium-3,3′-disulfonate-4,4′-dichlorodiphenylsulfone (S-DCDPS) and a benzimidazole-containing bisphenol were synthesized and afforded copolymers with enhanced stability. Selected properties of these membranes were compared to separately prepared miscible blends of disulfonated poly(arylene ether sulfone) copolymers and polybenzimidazole (PBI). Complexation of the sulfonic acid groups with the PBI structure reduced water swelling and proton conductivity. The enhanced proton conductivity of Nafion® membranes has been proposed to be due to the aggregation of the highly acidic side-chain sulfonic acid sites to form ion channels. A series of side-chain sulfonated poly(arylene ether sulfone) copolymers based on methoxyhydroquinone was synthesized in order to investigate this possible advantage and to couple this with the excellent hydrolytic stability of poly(arylene ether)s. The methoxy groups were deprotected to afford reactive phenolic sites and nucleophilic substitution reactions with functional aryl sulfonates were used to prepare simple aryl or highly acidic fluorinated sulfonated copolymers. The proton conductivity and water sorption of the resulting copolymers increased with the ion exchange capacity, but changing the acidity of the sulfonic acid had no apparent effect. / Ph. D.
35

Synthesis and Characterization of Sulfonated Poly (Arylene Ether Sulfone) Copolymers Via Direct Copolymerization: Candidates for Proton Exchange Membrane Fuel Cells

Harrison, William Lamont 13 December 2002 (has links)
A designed series of directly copolymerized homo- and disulfonated copolymers containing controlled degrees of pendant sulfonic acid groups have been synthesized via nucleophilic step polymerization. Novel sulfonated poly (arylene ether sulfone) copolymers using 4,4'-bisphenol A, 4,4'-biphenol, hexafluorinated (6F) bisphenol AF, and hydroquinone, respectively, with dichlorodiphenyl sulfone (DCDPS) and 3,3'-disodiumsulfonyl-4,4'-dichlorodiphenylsulfone (SDCDPS) were investigated. Molar ratios of DCDPS and SDCDPS were systematically varied to produce copolymers of controlled compositions, which contained up to 70 mol% of disulfonic acid moiety. The goal is to identify thermally, hydrolytically, and oxidatively stable high molecular weight, film-forming, ductile ion conducting copolymers, which had properties desirable for proton exchange membranes (PEM) in fuel cells. Commercially available bisphenols were selected to produce cost effective alternative PEMs. Partially aliphatic bisphenol A and hexafluorinated (6F) bisphenol AF produced amorphous copolymers with different thermal oxidative and surface properties. Biphenol and hydroquinone was utilized to produce wholly aromatic copolymers. The sulfonated copolymers were prepared in the sodium-salt form and converted to the acid moiety via two different methodologies and subsequently investigated as proton exchange membranes for fuel cells. Hydrophilicity increased with the level of disulfonation, as expected. Moreover, water sorption increased with increasing mole percent incorporation of SDCDPS. The copolymers' water uptake was a function of both bisphenol structure and degree of disulfonation. Furthermore, the acidification procedures were shown to influence the Tg values, water uptake, and conductivity of the copolymers. Atomic force microscopy (AFM) in the tapping mode confirmed that the morphology of the copolymers could be designed to display nanophase separation in the hydrophobic and hydrophilic (sulfonated) regions. Morphology with either co-continuous hydrophobic or hydrophilic domains could be attained for all the sulfonated copolymers. The degree of disulfonation required for continuity of the hydrophilic phase varied with biphenol structure. Proton conductivity values for the sulfonated copolymers, under fully hydrated conditions, were a function of bisphenol and degree of sulfonation. However, at equivalent ion exchange capacities the proton conductivities were comparable. A careful balance of copolymer composition and acidification method was necessary to afford a morphology that produced ductile films, which were also sufficiently proton conductive. The copolymers of optimum design produced values of 0.1 S/cm or higher, which were comparable to the commercial polyperfluorosulfonic acid material Nafion™ control. / Ph. D.
36

Matériaux à porosité contrôlée sulfonés : Synthèse, Caractérisation, Etude des propriétés catalytiques / Sulfonated ordered mesoporous materials : Synthesis, Charcacterization, Catalytic properties

Karaki, Mariam 08 July 2013 (has links)
La catalyse solide acide a été pendant longtemps l'objet d'activité de recherche intense, en particulier pour l'industrie pétrochimique. Aujourd'hui, les catalyseurs solides acides sont de plus en plus étudiés dans d'autres domaines et en particulier dans celles liées à la «chimie verte» et à la valorisation des bioressources, telles que la synthèse de biodiesel et la transformation des polysaccharides. L’objectif de la thèse est d’étudier le potentiel des matériaux poreux sulfonés ayant une porosité contrôlée dans des réactions catalysées par un acide en condition eau surchauffé telle que l'hydrolyse de la cellobiose. Dans une première partie, nous décrivons la préparation et la caractérisation des organosilicates mésoporeux périodiques sulfonés de type SBA-15, SBA-1 et KIT-6 par co-condensation de 1,4-bis (triéthoxysilyl) benzène (BTEB). Les matériaux ont été acidifiés suivant des voies différentes à l'aide de 3-mercaptopropyltriméthoxysilane (MPTMS)/H2O2 ou d'acide chlorosulfonique (ClSO3H). Leur propriété acide a été étudiée par adsorption d’NH3 suivie par calorimétrie et par la réaction de déshydratation d'isopropanol (IPA) comme réaction modèle en phase gazeuse. Contrairement à notre attente, l'adsorption d’NH3 suivie par calorimétrie a mis en évidence l'hétérogénéité de la force des sites suggérant la présence de sites distincts de la sulfonation. Les solides sulfonés avec l'acide chlorosulfonique ont une activité équivalente à celle de la résine sulfonée, Amberlyst 15, mais ils sont moins stables en raison de la libération des espèces de soufre. Les catalyseurs préparés en utilisant un groupement mercapto-propyle suivie d’une oxydation sont moins acides et ils ont donné des niveaux d'activité plus basse dans la réaction de déshydratation d'IPA. Pour l'hydrolyse de la cellobiose, de bonnes performances ont été obtenues à 150°C, mais, ces matériaux se sont montrés instables dans des conditions hydrothermales avec une lixiviation totale de soufre réalisant alors la réaction en phase homogène. Un lavage dans l'eau surchauffée des matériaux contenant des groupements propyles-SO3H conduit à une diminution de leur efficacité dans l'hydrolyse de la cellobiose, mais un gain de stabilité a été obtenu, permettant le recyclage de ces matériaux. Dans une deuxième partie, des répliques carbonées sulfonées par l’acide chlorosulfonique ou l’acide sulfurique ont été synthétisé. La sulfonation par l’acide sulfurique suivi par un lavage dans l’eau bouillante puis un prétraitement thermique à 300°C sous azote, de ces matériaux aboutissent au meilleur catalyseur en termes d’activité/stabilité. / Catalysis with solid acids has been for a long time the subject of intense research activities, especially for the petrochemical industry. Nowadays, solid acid catalysts are more and more studied in other areas and particularly in those related to “green chemistry” and bioresources valorization such as biodiesel synthesis and now polysaccharides transformations. The present work aimed to investigate the potential of acidic ordered mesoporous materials with a controlled local environment of the acid sites for applications in acid catalyzed reactions in hot water such as cellobiose hydrolysis. First we described the synthesis of periodic mesoporous organosilicas SBA-15, SBA-1 and KIT-6 types, from the condensation of 1,4-Bis(triethoxysilyl)benzene. The material was sulfonated using 3-mercaptopropyltrimethoxysilane further oxidized with H2O2 or chlorosulfonic acid to give Brønsted solid acids which were fully characterised. Their acidic properties were studied by calorimetry of NH3 adsorption and in the model reaction of gas phase isopropanol dehydration. The calorimetry of NH3 adsorption has evidenced the heterogeneity of the acid strength distribution suggesting the presence of distinct sites of sulfonation contrary to our expectation. For gas phase isopropanol (IPA) dehydration, the solids sulfonated with the chlorosulfonic acid exhibited an activity equivalent to that of the sulfonated resin, Amberlyst 15, but were less stable due to sulphur species release, assumed to be sulfonated silanols. The acidic organosilicas obtained via H2O2 oxidation of the mercapto-propyl group are less acidic catalysts, showing a low activity for gas phase IPA dehydration. In the hydrolysis reaction, the solids were active at 150 °C however sulfur leaching analysis showed that the reaction preceded mainly homogeneously, especially for the material acidified with chlorosulfonic acid. A hot washing pre-treatment applied to the catalysts containing the sulfonated propyl groups, led to a decrease of their hydrolysis activity but along with a gain of stability allowing recycling. Second we described the synthesis of ordered mesoporous carbon and their sulfonation with chlorosulfonic acid or sulfuric acid. Sulfonation of carbon replicas with sulfuric acid followed by washing in hot water and thermal pretreatment at 300°C under nitrogen, lead to the best catalyst in terms of activity / stability.
37

Development Of Organic-inorganic Composite Membranes For Fuel Cell Applications

Erdener, Hulya 01 July 2007 (has links) (PDF)
Hydrogen is considered to be the most promising energy carrier of the 21st century due to its high energy density and sustainability. The chemical energy of hydrogen can be directly converted into electricity by means of electrochemical devices called fuel cells. Proton exchange membrane fuel cells (PEMFC) are the most preferred type of fuel cells due to their low operating temperatures enabling fast and easy start-ups and quick responses to load changes. One of the most important components of a PEMFC is the proton conducting membrane. The current membrane technology is based on perfluorosulfonic acid membranes and the most common one being Nafion. Although these membranes have good thermal and chemical stability, mechanical strength and high proton conductivities, they tend to dehydrate very fast at high temperatures and low relative humidity leading to poor fuel cell performances. Moreover, the high manufacturing cost of these membranes limits the mass-production of PEMFC&amp / #8217 / s in near future. The aim of this study is to develop alternative PEMFC membranes that have sufficient thermal and chemical stability, mechanical strength and comparable proton conductivity and fuel cell performances with Nafion membranes at relatively low cost. In this context, organic-inorganic composite membranes and blends were developed. A relatively cheap and commercially available polymer, polyether ether ketone, (PEEK), was chosen as the membrane matrix for its high thermal and mechanical stability and improvable proton conductivity via post-sulfonation. The proton conductivity of SPEEK membrane (at DS 68%) was 0.06 S/cm at 60&deg / C, and this conductivity was further increased to 0.13 S/cm with the introduction of zeolite beta crystals as inorganic fillers. The conductivity of a SPEEK blend (25wt% SPES-75wt% SPEEK) membrane was 0.08 S/cm at 90&deg / C. In PEMFC performance tests, 397 mA/cm2 was obtained for SPEEK membrane (DS 56%) at 0.6V for a H2/O2 PEMFC working at 1 atm and 80&deg / C. This result is promising when compared to the performance of Nafion 112&reg / of 660mA/cm2 under same conditions. These results are welcomed since the target for commercially viable alternate membranes are reached.
38

Development And Characterization Of Composite Proton Exchange Membranes For Fuel Cell Applications

Akay, Ramiz Gultekin 01 February 2008 (has links) (PDF)
Intensive research on development of alternative low cost, high temperature membranes for proton exchange membrane (PEM) fuel cells is going on because of the well-known limitations of industry standard perfluoro-sulfonic acid (PFSA) membranes. To overcome these limitations such as the decrease in performance at high temperatures (&gt / 80 0C) and high cost, non-fluorinated aromatic hydrocarbon based polymers are attractive. The objective of this study is to develop alternative membranes that possess comparable properties with PFSA membranes at a lower cost. For this purpose post-sulfonation studies of commercially available engineering thermoplastics, polyether-ether ketone (PEEK) and polyether-sulfone (PES), were performed by using suitable sulfonating agents and conditions. Post sulfonated polymers were characterized with proton nuclear magnetic resonance spectroscopy (H+-NMR), sulfur elemental analysis and titration to calculate the degree of sulfonation (DS) values and with TGA and DSC for thermal stability and glass transition temperature (Tg). Chemical stabilities were evaluated by hydrogen v peroxide tests. Proton conductivities of sulfonated PEEK (SPEEK) measured by electrochemical impedance spectroscopy (EIS) were observed to increase linearly with degree of sulfonation (DS). However, above a certain DS SPEEK loses its mechanical stability significantly with excessive swelling which leads to deteriorations in mechanical stability. Therefore, DS of 50-70% were used for the fabrication of composite membranes. To improve mechanical stability, SPEEK polymers were blended with more stable polymers, polyether-sulfone (PES) or in its sulfonated form (SPES) or with polybenzimidazole (PBI). In addition, the composite approach, which involves the incorporation of various inorganic fillers such as zeolite beta, TiO2, montmorrilonite (MMT), heteropolyacids (HPA), was used for further improvement of proton conductivity. Among the composite membranes 20% TPA/SPEEK (DS=68) composites conductivity value exceeded that of Nafion&lsquo / s at room temperature. Effects of various parameters during the fabrication process such as the filler type and loading, DS of sulfonated polymer, casting solvents, and thermal and chemical treatment were also investigated and optimized. Various blend/composite membranes were fabricated with solvent casting method, and characterized for their proton conductivity, chemical/thermal stability and for evaluating their voltage/current performance at various temperatures in a single cell setup. Chemically and thermo-hydrolytically stable composite/blend membranes such as 25% tungstophosphoric acid (TPA)/PBI(5%)/SPEEK (DS=68) with good single cell performances at 800C were developed (~450 mA/cm2 at 0.5 V). The performance of the hydrolytically stable composite/blend membrane prepared with SPEEK (DS=59) / 5% PBI / and 10% TiO2 increased appreciably when the temperature was raised from 80 0C to 90 0C while the performance of Nafion decreases sharply after 80 0C. Methanol permeability studies were also performed for investigating the potential of fabricated blend/composite membranes for direct methanol fuel cell (DMFC) use. Selectivities (conductivity/methanol permeability) vi greater than Nafion 112 (S=7.3x107) for DMFC were observed for composite/blend membranes such as 10% TiO2/10% PES blend with SPEEK (DS=68) with a selectivity of 9.3x107. The factors that affect proton conductivity measurements were investigated and equivalent circuit analysis was performed with results obtained by electrochemical impedance spectroscopy (EIS). The choice of the conductivity cell (electrodes, cell geometry) and the method (2-probe vs 4-probe) were shown to affect the conductivity analysis. A systematic development and characterization route was established and it was shown that by optimizing proton conductivity and thermal/chemical stability with blending/composite approaches it is possible to produce novel high performance proton exchange membranes for fuel cell applications.
39

Redução de espécies nitrato em água sobre catalisadores bimetálicos de paládio

Barbosa, Danns Pereira January 2011 (has links)
150f. / Submitted by Ana Hilda Fonseca (anahilda@ufba.br) on 2013-04-01T15:55:02Z No. of bitstreams: 1 Tese final Danns Barbosa 08,02,11.pdf: 6113429 bytes, checksum: 69ec8ea24d6f9bf83f16a0221337ec76 (MD5) / Approved for entry into archive by Ana Hilda Fonseca(anahilda@ufba.br) on 2013-04-24T17:03:41Z (GMT) No. of bitstreams: 1 Tese final Danns Barbosa 08,02,11.pdf: 6113429 bytes, checksum: 69ec8ea24d6f9bf83f16a0221337ec76 (MD5) / Made available in DSpace on 2013-04-24T17:03:41Z (GMT). No. of bitstreams: 1 Tese final Danns Barbosa 08,02,11.pdf: 6113429 bytes, checksum: 69ec8ea24d6f9bf83f16a0221337ec76 (MD5) Previous issue date: 2011 / CAPES / O amplo uso de fertilizantes nitrogenados, bem como os sistemas de saneamento rudimentares e as atividades pecuárias, têm aumentado a contaminação das águas subterrâneas e, portanto, da água potável. Devido aos graves riscos das espécies nitrato para a saúde humana, tem sido dispensada muita atenção para o desenvolvimento de tecnologias para removê-las da água. Dessa forma, neste trabalho foram preparados catalisadores bimetálicos de paládio e estanho ou índio suportados em estireno-divinilbenzeno (Sty-DVB) sulfonado, a fim de desenvolver catalisadores eficientes para a remoção das espécies nitrato da água. O suporte foi sintetizado por polimerização em suspensão, enquanto os catalisadores bimetálicos foram preparados por dois métodos: impregnações sucessivas e redução catalítica. Foram obtidos catalisadores com 5% m/m de paládio e vários teores (0,5, 2 e 4% m/m) de estanho ou índio, que foram caracterizados por espectroscopia no infravermelho com transformada de Fourier, adsorção de nitrogênio, análise química elementar, difração de raios X, termogravimetria e microscopia eletrônica de varredura. Os catalisadores foram avaliados na redução das espécies de nitrato na água, na presença e na ausência de dióxido de carbono. Verificou-se que o suporte não adsorve nitrato, nitrito e amônia e não apresenta atividade na redução das espécies nitrato. Os catalisadores com índio foram mais ativos na redução de espécies nitrato, e menos seletivos a nitrogênio, do que os catalisadores com estanho. Além disso, os catalisadores com estanho e preparados por redução catalítica foram mais ativos do que aqueles preparados por impregnações sucessivas. Um comportamento inverso foi observado com os catalisadores contendo índio. Com a maioria das amostras, o dióxido de carbono aumentou a atividade, reduziu a seletividade a nitrito e aumentou a produção das espécies amônio. Os melhores desempenhos catalíticos foram apresentados pelas amostras 5%Pd2%Sn/Sty-DVB, (atividade=15,2 cmol. min-1.g-1; seletividade a nitrogênio = 98%) e 5%Pd0,5%In/Sty-DVB (atividade= 18,8 cmol.min-1.g-1; seletividade a nitrogênio = 89%), preparadas por impregnações sucessivas e redução catalítica , respectivamente. / Salvador
40

Propriedades ópticas do poliestireno sulfonado dopado com íons de neodímio

Silva, Marcelo Castanheira da 23 May 2006 (has links)
Fundação de Amparo a Pesquisa do Estado de Minas Gerais / In this work we present the synthesis and optic characterization of sulfonated polystyrene films (PSS) doped with ions of neodymium (Nd). The synthesis has a low cost and a simple route. The used dopant was the neodymium nitrate. The maximum incorporation of ions Nd3+ in the matrix, gotten in the synthesis of the films, was around 14.0 %. The absorption spectra in UV-Vis-NIR of the films of Nd-PSS had presented the characteristic bands for neodymium in aqueous solution. The FTIR spectra had presented a significant widening of the bands in relation to the sulfonated polystyrene spectrum. In this same spectrum occurs a great change in the form of line of the Nd-PSS film in the region below of 1400 cm-1 referring to the vibration of linking N-O. The films measured by Raman spectroscopy have presented the same intensity and localization of the peaks, independently of the region of incidence of the laser in the film. The analysis of these spectra demonstrates the overlapping of the bands: stretching of linking S-O, anti-symmetrical stretching of nitrate and the fold is of the plan of linking N-O. This fact proves the doping of the H-PSS and that the Nd07 film (contends the precursory neodymium solution 0.7 mol/L) is of higher concentration. The luminescence spectrum in UV-Vis region had shown that when the PSS polymer matrix is doped a blue shift is observed. The luminescence spectra excited in 458 nm (absorption band of the HPSS) and in 514 nm (absorption band of the Nd3+ ion) indicate, respectively, that it has an aiding of the emission around 520 nm (green) and of 610 nm (orange). The spectra of selective excitement show that it has an overlapping of the bands of excitement of the PSS with the Nd-PSS, when the wavelength of excitement varies of 400 until 500 nm. The bands of the Nd-PSS became wider and are more definite. The films of Nd- PSS present an intense emission in the infrared in 1076 nm (radiative transition 4F3/2®4I11/2). It was not observed dependence with the concentration in all spectra done. The factor of spectroscopic quality of the Nd11 film, gotten for the parameters of Judd-Ofelt, indicates that the domain of the transistion occurs in 4F3/2 ® 4I11/2 (1076 nm), proving with the results of the measures made in the photoluminescence in the infra-red. This confirms that the Nd11 film is an excellent candidate to be used in optic devices. / Nesse trabalho apresentamos a síntese e caracterização óptica de filmes de poliestireno sulfonado (PSS) dopados com íons de neodímio (Nd), utilizando uma rota sintética simples e de baixo custo. O dopante utilizado foi o nitrato de neodímio. A incorporação máxima de íons Nd3+ na matriz, obtida na síntese dos filmes, ficou em torno de 14,0 %. Os espectros de absorção no UV-Vis-NIR dos filmes de Nd-PSS apresentaram as bandas características para o neodímio em solução aquosa. Os espectros de FTIR apresentaram um alargamento significativo das bandas em relação ao espectro de poliestireno sulfonado. Nesse mesmo espectro ocorre uma grande mudança na forma de linha do filme Nd-PSS na região abaixo de 1400 cm-1 referente à vibração da ligação N-O. Os filmes medidos por espectroscopia Raman apresentaram a mesma intensidade e localização dos picos, independentemente da região de incidência do laser na amostra. A análise desses espectros demonstra a superposição das bandas de: estiramento da ligação S-O, estiramento assimétrico do nitrato e a dobra fora do plano da ligação N-O. Esse fato comprova a dopagem do H-PSS e que o filme Nd07 (contendo a solução precursora de neodímio 0,7 mol/L) é o mais concentrado. Os espectros de luminescência no UV-Vis mostraram que quando se dopa a matriz polimérica PSS ocorre um deslocamento para o azul. Os espectros de luminescência com excitações em 458 nm (banda de absorção do H-PSS) e em 514 nm (banda de absorção do íon Nd3+) indicam que há um favorecimento da emissão em torno de 520 nm (verde) e de 610 nm (alaranjado), respectivamente. Os espectros de excitação seletiva mostram que há uma superposição das bandas de excitação do PSS com o Nd-PSS, quando o comprimento de onda de excitação varia de 400 até 500 nm. Acima de 500 nm, as bandas do Nd-PSS se alargam e ficam mais definidas. Os filmes de Nd-PSS apresentam uma intensa emissão no infravermelho em 1076 nm (transição radiativa 4F3/2®4I11/2). Não foi observada nenhuma dependência com a concentração em todos os espectros realizados. O fator de qualidade espectroscópica do filme Nd11, obtido pelos parâmetros de Judd-Ofelt, indica que ocorre o domínio da transição 4F3/2 ® 4I11/2 em 1076 nm, corroborando com os resultados das medidas feitas via fotoluminescência e infravermelho. Isso confirma que o filme Nd11 é um ótimo candidato para ser usado em dispositivos ópticos. / Mestre em Física

Page generated in 0.1179 seconds