Spelling suggestions: "subject:"water desalination"" "subject:"water desalienation""
1 |
Dynamic Risk Assessment in Desalination Plants: A Multilevel Bayesian Network ApproachAlfageh, Alyah 09 July 2023 (has links)
The criticality of desalination plants, which greatly rely on Industrial Control
Systems (ICS), has heightened due to the scarcity of clean water. This reliance
greatly emphasizes the necessity of securing these systems, alongside implementing a robust risk assessment protocol. To address these challenges and the existing limitations in prevalent risk assessment methodologies, this thesis proposes a risk assessment approach for ICS within desalination facilities. The proposed strategy integrates Bayesian Networks (BNs) and Dynamic Programming (DP). The thesis develops BNs into multilevel Bayesian Networks (MBNs), a form that effectively handles system complexity, aids inference, and dynamically modifies risk profiles.
These networks account for the interactions and dynamic behaviors of system components,providing a level of responsiveness often missing in traditional methods. A standout feature of this approach is its consideration of the potential attackers’perspective, often neglected but critical for a comprehensive risk assessment and the development of solid defense strategies. DP supplements this approach by simplifying complex problems and and identifying the most optimal paths for potential attacks. Therefore, this thesis contributes greatly to enhancing the safety of critical infrastructures like water desalination plants, addressing key deficiencies in existing safety precautions.
|
2 |
Sustainable Energy Solutions for Water Purification Applications: Municipal and Industrial Case StudiesMira, Sebastião Bittencourt de 05 1900 (has links)
In several areas around the world, clean water is a precious asset that at anytime, and mainly due to circumstances of weather and climate, can become scarce. Mainly in the dry and remote places, people suffer with lack of water. A solution for this suffering can be a water desalination system, which makes water potable and usable for industry. That solution inherently, brings the problem of power requirement, which is sometimes arduous to accomplish in such remote areas of difficult access and long distances to overcome to build the infrastructure required to operate an electric power plant. Texas and the USA also face this scenario for many regions, for which the government has been creating some programs and driving forward incentives, looking for solutions to support water desalination. Water desalination has future applications for municipalities water-consuming or for arid and remote regions, as well as for industries that rely on heavy water usage, such as natural gas drilling operations, for which millions of gallons are trucked overland to the site and also hauled away afterwards, when the waste water produced must be treated. This thesis created the concept of autonomy for water desalination plants replacing the actual power supply from fossil fuel to a renewable source from wind or sun, giving capacity to them to produce its own electricity to operate as an autonomous unit, as demonstrated in the business case done for the Brownsville water desalination facility.
|
3 |
Layer-by-Layer Assembly of Carbon Nanomaterials Containing Thin Film Nanocomposite Membranes for Water Desalination and Organic Solvent Nanofiltration ApplicationsAbbaszadeh, Mahsa 25 November 2020 (has links)
The application of membranes in liquid and gas separation is attractive because of their energy efficiency. Synthesis of membranes with well-defined nanostructure is necessary to achieve highly permeability and selectivity for separation processes. Recently, carbon nanomaterials such as graphene oxide nanoplatelets (GONPs) and carbon nanodots (CNDs) have emerged as an interesting class of nanomaterials due to their unique properties and tailorable functionalities. Incorporation of these nanomaterials in the membranes has been shown to improve membrane selectivity, mechanical robustness, and chemical stability. This dissertation elaborates on developing CNDs or GONPs embedded thin film composite (TFC) membranes using layer-by-layer (LbL) synthesis technique. Regarding the water desalination applications, GONPs were used to enhance the TFC membranes’ selectivity, chlorine resistant properties, and surface hydrophilicity. Incorporation of GONPs in the polyamide layer via LbL method resulted in an increase of surface hydrophilicity and salt rejection properties. Upon exposure to chlorine, GONPs embedded membranes retained salt rejection performance better than the pristine membranes (without GONPs). The LbL assembly was used to synthesize CNDs based TFC membranes for organic solvent nanofiltration (OSN) applications. Using the LbL framework, amineunctionalized CNDs were covalently crosslinked with trimesoyl chloride monomer to obtain nanoscale membranes. The synthesized membranes manifested high selectivity (up to 90%) when tested for dye molecules such as brilliant blue and disperse red in methanol. As the CNDs synthesized here are fluorescent under UV light, the resultant film is also fluorescent. This property can be harnessed for diagnostic purposes, such as tracking mechanical failure and fouling of the membranes. Based on the results, it can be concluded that the incorporation of carbon nanomaterials in the polymeric membranes has enhanced the hydrophilicity, mechanical stability, and chlorine resistant properties of the membranes. Overall, the LbL platform can be considered as a modular method in embedding nanoparticles in TFC membranes.
|
4 |
Performance evaluation of reverse osmosis brackish water desalination plant with different recycled ratios of retentateAlsarayreh, Alanood A., Al-Obaidi, Mudhar A.A.R., Al-Hroub, A.M., Patel, Rajnikant, Mujtaba, Iqbal 28 March 2022 (has links)
Yes / Reverse Osmosis (RO) process has become one of the most widely utilised technologies for brackish water desalination for its capabilities of producing high-quality water. This paper emphasis on investigating the feasibility of implementing the retentate recycle design on the original design of an industrial medium-sized multistage and multi-pass spiral wound brackish water RO desalination plant (1200 m³/day) of Arab Potash Company (APC) located in Jordan. Specifically, this research explores the impact of recycling the high salinity stream of the 1st pass (at different recycled percentages) to the feed stream on the process performance indicators include, the fresh water salinity, overall recovery rate, and specific energy consumption. The simulation is carried out using an earlier model developed by the same authors for the specified RO plant using gPROMS suits. This confirmed the possibility of increasing the product capacity by around 3% with 100% recycle percentage of the high salinity retentate stream.
|
5 |
A review of the configurations, capabilities, and cutting-edge options for multistage solar stills in water desalinationRashid, F.L., Kaood, A., Al-Obaidi, Mudhar A.A.R., Mohammed, H.I., Alsarayreh, Alanood A., Al-Muhsen, N.F.O., Abbas, A.S., Zubo, R.H.A., Mohammad, A.T., Alsadaie, S., Sowgath, M.T., Abd-Alhameed, Raed, Mujtaba, Iqbal 11 June 2023 (has links)
Yes / The desalination of saltwater is a viable option to produce freshwater. All the desalination processes are energy-intensive and can be carried out on a large scale. Therefore, producing freshwater using renewable energy sources is the most desirable option considering the current energy crisis and the effect that fossil-fuel-based energy has on our carbon footprint. In this respect, the tray-type still, one of several solar power desalination still varieties, is popular owing to its straightforward design, economic materials of construction, and minimal maintenance requirements, especially in isolated island regions with restricted energy and natural water supplies. The traditional tray-type solar power has a few drawbacks, such as the inability to recover latent heat from condensation, reduced thermal convection, a large heat capacity, and comparatively minimal driving power through evaporation. Therefore, the improvement of heat and mass transfer capabilities in tray-type stills has been the subject of many studies. However, there is a lack of a comprehensive review in the open literature that covers the design and operational details of multistage solar stills. The purpose of this paper is to present a thorough overview of the past research on multistage solar stills, in terms of configurations, capabilities, and cutting-edge options. In comparison to a unit without a salt-blocking formation, the review indicates that a multistage distillation unit may run continuously at high radiation and generate pure water that is around 1.7 times higher than a unit without a salt-blocking formation. The most effective deign is found to be “V”-shaped solar still trays that attach to four-stage stills, since they are less expensive and more economical than the “floor” (Λ-shape) design, which requires two collectors. Additionally, it can be stated that the unit thermal efficiency, solar percentage, and collected solar energy (over the course of a year) increase by 23%, 18%, and 24%, respectively, when the solar collectors are increased by 26% (at the constant inflow velocity of the water).
|
6 |
Application of Ion Concentration Polarization to Water Desalination and Active Control of Analytes in PaperPei, Zhang 11 December 2013 (has links)
This thesis focuses on the development of two new applications using ion concentration polarization (ICP): an out-of-plane microfluidic approach for water desalination and a method for concentration and transportation of charged analytes in paper-based biomedical diagnostic device.
In the first work, we present an out-of-plane desalination approach using ICP. A depletion boundary separates salt ions and purified water into distinct vertically stacked layers. The out-of-plane design enables multiplexing in three dimensions, providing the functional density required for practical applications. The second work demonstrates an active control mechanism of target analytes in paper using ICP. Both external devices (with all functional units on one side of paper) and integrated paper microfluidic devices (by embedding all functional units in paper) were developed to concentrate and transport charged analyte molecules in the paper. We also demonstrate a new fabrication method of nanofluidic and hydrophobic barriers (nanoporous membrane patterning) in paper microfluidic device.
|
7 |
Application of Ion Concentration Polarization to Water Desalination and Active Control of Analytes in PaperPei, Zhang 11 December 2013 (has links)
This thesis focuses on the development of two new applications using ion concentration polarization (ICP): an out-of-plane microfluidic approach for water desalination and a method for concentration and transportation of charged analytes in paper-based biomedical diagnostic device.
In the first work, we present an out-of-plane desalination approach using ICP. A depletion boundary separates salt ions and purified water into distinct vertically stacked layers. The out-of-plane design enables multiplexing in three dimensions, providing the functional density required for practical applications. The second work demonstrates an active control mechanism of target analytes in paper using ICP. Both external devices (with all functional units on one side of paper) and integrated paper microfluidic devices (by embedding all functional units in paper) were developed to concentrate and transport charged analyte molecules in the paper. We also demonstrate a new fabrication method of nanofluidic and hydrophobic barriers (nanoporous membrane patterning) in paper microfluidic device.
|
8 |
FABRICATION OF SWNTs FOR WATER DESALINATION AND MULTILAYER STRUCTURE FOR DNA SEQUENCINGYao, Jingyuan 01 January 2012 (has links)
0.7nm single wall carbon nanotubes have been synthesized within VPI-5 zeolite channels with sucrose as carbon precursor. VPI-5 molecular sieves are synthesized hydrothermally under conventional heating. X-ray powder diffraction, micro raman, scanning electron microscope (SEM), transmission electron microscope (TEM), Thermogravimetric analysis have been used to investigate the structure of zeolite and thermal decoposition process of carbon precursors. 0.4nm single wall carbon nanotubes have also been fabricated within AlPO4-5 nanopores. A key challenge is to produce high yield single wall carbon nanotubes with uniform diameter. In order to improve the carbon nanotube yield, different organic precursors are employed. Although the problem is still the repetition and low yield of CNTs, it is still an improvement for 0.7nm SWNTs synthesis with the new template prolysis method.
The novel multilayer conductor/insulator/conductor structures have been fabricated. This structure might find potential application in DNA sequential reactions because each layer might be individually addressed with voltage. When bias is applied to the conductive layer, it can be chemically functionalized, which leads to membrane pore with multiple reaction sequences when the molecule traverses the membrane reactor. In this thesis, Carbon/polymer/carbon system and copper/polymer system will be introduced. O2 RIE was used to expose the edge of carbon/polymer/carbon structure. However, the conductivity of carbon layer is not high enough for electroplating. Copper pores etched by FeCl3 solution shows good conductivity, and can be electroplated with metal nanoparticles.
|
9 |
Proposal of an Eco-Industrial Park based on the water desalination plant located inside the King Abdullah University of Science and TechnologyLopez Torres, Rodrigo 12 1900 (has links)
This thesis project is a proposal of a scenario of an industrial collaboration that could become the basis for the development of an Eco-Industrial Park inside the King Abdullah University of Science and Technology using the water desalination plant as the foundation of this network. It is defined why the university is a suitable place for a development of this type; what industrial networks can be formed and what environmental, economic and social benefits could be achieved if the Kingdom of Saudi Arabia implemented this project around the country. An Eco-Industrial Park is a collaboration between industries where they share resources and create an exchange network of wastes and by-products with the objective of obtaining positive environmental, economic and social impacts. In the proposed scenario, the initial collaboration is between a PV solar plant and the water desalination located inside the university. With the use of solar energy there are savings of CO2 emissions, which turn into positive impacts on the environment. The idea is that this initial collaboration could be extended in the future to provide the entire energy consumption of the KAUST community. The project also provides an insight into how an industrial symbiosis could be formed taking as a base this industrial collaboration. However, further studies and analysis are required in order to provide more solid information regarding the development of an Eco-Industrial Park.
|
10 |
Energy Efficient Water Desalination Based on Faradic ReactionsBentalib, Abdulaziz January 2020 (has links)
No description available.
|
Page generated in 0.1228 seconds