Spelling suggestions: "subject:"capacitive""
1 |
Pseudocapacitive Oxides and Sulfides for High-Performance Electrochemical Energy StorageXia, Chuan 22 March 2018 (has links)
The intermittent nature of several sustainable energy sources such as solar and wind energy has ignited the demand of electrochemical energy storage devices in the form of batteries and electrochemical capacitors. The future generation of electrochemical capacitors will in large part depend on the use of pseudocapacitive materials in one or both electrodes. Developing pseudocapacitors to have both high energy and power density is crucial for future energy storage systems. This dissertation evaluates two different material systems to achieve high energy density pseudocapacitive energy storage.
This research presents the successful preparation and application of ternary NiCo2S4, which is based on the surface redox mechanism, in the area of pseudocapacitive energy storage. Attention has been paid to understanding its basic physical properties which can impact its electrochemical behavior. Well-defined single- and double-shell NiCo2S4 hollow spheres were fabricated for pseudocapacitor applications, showing much improved electrochemical storage performance with good energy and power densities, as well as excellent cycling stability. To overcome the complexity of the preparation methods of NiCo2S4 nanostructures, a one-step approach was developed for the first time. Asymmetric pseudocapacitors using NiCo2S4 as cathode and graphene as anode were also fabricated to extend the operation voltage in aqueous electrolyte, and thus enhance the overall capacity of the cells. Furthermore, high-performance on-chip pseudocapacitive energy storage was demonstrated using NiCo2S4 as electrochemically active materials.
This dissertation also involves another material system, intercalation pseudocapacitive VO2 (B), that displays a different charge storage mechanism from NiCo2S4. By constructing high-quality, atomically-thin two-dimensional (2D) VO2 (B) sheets using a general monomer-assisted approach, we demonstrate that a rational design of atomically thin, 2D nanostructures of atypically layered systems can greatly lower the interaction energy and Li+ diffusion barrier, and it can completely suppress the crystal transformation during the charge-discharge process. As a result, we have successfully enabled the kinetically sluggish step to proceed at room temperature. We show that even at charge-discharge rates as fast as 100C (36 s), these 2D electrodes still offer a high capacity of 140 mAh g-1 due to the rapid Li+ ion diffusion in these 2D sheets. These results discussed in this part conclusively show that the ultrathin 2D geometry of atypically layered or non-layered materials could lead to significantly enhanced pseudocapacitive performance.
|
2 |
Energy Efficient Water Desalination Based on Faradic ReactionsBentalib, Abdulaziz January 2020 (has links)
No description available.
|
3 |
Printable 3D MoS2 Architected Foam with Multiscale Structural Hierarchies for High-rate, High-capacity and High-mass-loading Energy StorageWei, Xuan 01 August 2021 (has links)
Materials with three-dimensional (3D) hierarchical architectures exhibit attractive mechanical, energy conversion and thermal radiative cooling properties not found in their bulk counterparts. However, implementation of hierarchically structured 3D transition metal dichalcogenides (TMDs) is widely deemed not possible, by the lack of manufacturing solutions that overcome the hierarchy, quality, and scalability dilemma. Here we report dewetting-driven destabilization (DDD) process that enables simple, template-free, high throughput printing of 3D architected MoS2 Foam with hierarchy spanning seven orders of magnitude — from angstroms to centimeters. Although extremely simple, our manufacturing process combines electrohydrodynamic printing with dewetting-induced-patterning. This technique can be applied to a range of dissimilar twodimensional (2D) layered materials, including Ti3C2Tx MXene and reduced graphene oxide (rGO).
The deposited MoS2 Foam achieves amplification of resilience and conductivity. It constructs hierarchically porous and spatially interconnected networks for both ions and electrons transfer. We further demonstrate the 3D MoS2 architected foam as high-performance anodes with an otherwise unachievable combination of a 99% battery yield, a dynamic recovery (up to 85%) to withstand excessive volume expansion, a strain-induced reduction in diffusion barrier (0.2 eV), and improved electron transport abilities across the entire structure. The result is the high Li-ion charge storage capacity with robust cycling stability at a bulk scale (~3.5 mg/cm2) and under a high current density (10,000 mA/g). The outstanding electrochemical performance arises from the architected structure-induced pseudocapacitive energy storage mechanism based on the redox reaction of Mo, rather than the traditional conversion reaction. Notably, the performance achieved is on par with or surpasses state-of-the-art anodes made of black phosphorus composites, Si-graphene and mesoporous graphene particle anodes, while the technique offers an evaporation-like simplicity for industrial scalability.
This work is foundational, and the developed DDD process opens a new sight to manufacture structurally robust, multifunctional hierarchical structures from 2D materials. Given the high adjustability of synthesis conditions and a wide variety of 2D materials, we anticipate previously unattainable possibilities in the energy storage, flexible electronics, catalysis, separation and drug delivery.
|
4 |
Oxydes polycationiques pour supercondensateurs à haute densité d'énergie volumique / Polycationic oxides for supercapacitors with high volumetric energy densityLannelongue, Pierre 21 November 2018 (has links)
Les supercondensateurs sont des dispositifs de stockage électrochimique de l’énergie très intéressants lorsque des pics de puissance sont mis en jeu. Toutefois, leur densité d’énergie volumique est la principale limite pour leur intégration, en particulier, dans des systèmes de transport terrestre. L’utilisation de matériaux d’électrode ayant un comportement pseudocapacitif et des masses volumiques élevées permettrait d’améliorer la densité d’énergie volumique des supercondensateurs. Avec cet objectif, des dispositifs à base des matériaux de la famille Ba0,5Sr0,5CoxFe1-xO3-δ, nommés BSCFs, ont été développés dans le cadre de cette thèse. Plusieurs compositions de cette famille d’oxydes ont été préparées par un procédé glycine-nitrate et ont été testés comme matériau actif d’électrode positive en milieu aqueux neutre. La capacité volumique de ces matériaux s’avère être beaucoup plus élevée que celle des carbones activés utilisés dans les supercondensateurs commerciaux. Elle a montré également dépendre de la composition en cobalt et en fer, du régime de charge, de la nature de l’électrolyte… Le mécanisme de stockage de charges dans ces matériaux a été exploré grâce à des techniques in situ (absorption des rayons X) et operando (diffraction des rayons X) effectuées aux synchrotrons SOLEIL (France) et SPring-8 (Japon). Enfin, des dispositifs associant une électrode positive à base de BSCF et du carbone activé ou FeWO4 en tant qu’électrode négative ont démontré l’intérêt d’intégrer de tels matériaux pour améliorer la densité d’énergie volumique des supercondensateurs. / Supercapacitors are attractive electrochemical energy storage devices for high power applications. However, volumetric energy density is the main limitation for their integration in such applications as terrestrial transport systems. The use of high density pseudocapacitive oxides as electrode material could lead to a volumetric energy density improvement. With this aim, materials from Ba0,5Sr0,5CoxFe1-xO3-δ family, so called BSCFs, have been studied. Several compositions have been prepared and evaluated as positive electrode materials in aqueous neutral electrolyte. Volumetric capacitances have shown to be greater than those of activated carbons, already used in marketed supercapacitors. They have also shown to depend on cobalt and iron ratio, charge rate, electrolyte composition... The study of the charge storage mechanism in these materials has been investigated thanks to in situ (X-Ray absroption spectroscopy) and operando (X-Ray diffraction) technics performed at SOLEIL (France) and SPring-8 (Japan) synchrotron facilities. Finally, devices coupling BSCF based positive electrode material with activated carbon or FeWO4 based negative electrode materials have demonstrated the added value of such materials to improve the volumetric energy density of supercapacitors.
|
5 |
Magnetically Ordered Bimettalic Oxide-Composite Pseudocapacitive Materials for Supercapacitors Applications / FERRIMAGNETIC OXIDE-COMPOSITE MATERIALS FOR SUPERCAPACITORSMacDonald, Michael January 2024 (has links)
This thesis contains the research performed on novel magnetically ordered pseudocapacitive materials (MOPCs) which display interesting and unique capacitive properties. These properties are a result of the strong magneto-capacitive and magneto-electric coupling characteristics that MOPC materials possess at room temperature. The purpose of this research is to investigate the unique capacitive properties of NiFe2O4 (NFO) and SrFe12O19(SFO) by examining the effects that the high energy ball milling procedure, the addition of a charge transfer mediation and biomimetic dispersing agent called gallocyanine dye, and the formation of composite electrodes at varying mass ratios with pseudocapacitive conducting polypyrrole polymer have on the capacitance of NFO and SFO. / The enhanced cycle stability, cycle lifetime, capacitance retention, and power densities of electrochemical capacitors make them an increasingly attractive option for modern energy storage needs, including grid level energy storage systems, mobile electronics, heavy construction equipment, military communication devices, power tools, public transportation, electric vehicles and capacitive water deionization systems to name a few. Recently, materials that displayed magnetoelectric coupling phenomena leading to enhanced magneto-capacitive properties are of particular interest, specifically ferrimagnetic spinels and hexagonal ferrites. This thesis is aimed at improving the capacitive performance of NiFe2O4 (NFO) and SrFe12O19 (SFO) based magnetically ordered pseudocapacitor electrodes by elucidating the effects of various nanomaterials preparation techniques on capacitance. The nanomaterials preparation techniques explored in this body of work include the addition of biomimetic dispersing agents, application of high energy ball milling, and forming composites using n-doped conducting pseudocapacitive polypyrrole polymers. Project 1 explored how the addition of gallocyanine dye (GCD) dispersing agent affects the capacitance of NFO. Additionally, the effects of the high energy ball milling (HEBM) process on capacitance were explored and these results were combined with the optimized gallocyanine dye results. Lastly NFO composites with Tiron-doped PPy were prepared at varying mass ratios and combined with optimized HEBM results to achieve the best capacitance results. Project 2 utilized the optimized GCD mass ratios with HEBM to enhance the capacitance of SFO. Tiron doped PPy was used with HEBM SFO at varying mass ratios to achieve the best performing composite electrode. Lastly, the best electrode composition from project 2 was used as anode in an aqueous asymmetric cell using MnO2 as the cathode, proving to be a viable anode chemistry in practical electrochemical capacitor applications. / Thesis / Master of Applied Science (MASc) / The global power demand has been increasing rapidly since the advent of the industrial era, unfortunately human civilization has mostly relied upon fossil fuels to provide the necessary energy for the function of society resulting in vast quantities of greenhouse gases being released into the atmosphere, having a global warming effect on the planet. Recently renewable energy production technologies have been developed but many are intermittent in nature and require efficient energy storage devices to properly hold that energy. Additionally, with countless industries requiring varying quantities of energy or power, the solution for adequate energy storage is a complex multifaceted one that cannot be solved by one energy storage technology alone. For this reason, additional energy storage technology must be developed. The main goal of this work is to develop electrochemical capacitor (ECs) technology, an energy storage solution with greater capacitance retention, cycle stability and cycle lifetime attributes at high charge-discharge rates relative to current battery technology, meaning that ECs can outperform batteries in high power demand applications such as; regenerative breaking, hand-held power tools, heavy construction equipment and even the large energy fluctuations associated with grid level energy storage. Materials with novel magnetic properties were explored to be developed for high active mass loaded electrodes using advanced nano-materials preparation techniques to enhance capacitance. Doing so increased the performance of these energy storage devices drastically, overcoming the poor intercalation attributes associated with high active mass loaded electrodes, making them viable for practical energy storage applications.
|
Page generated in 0.0783 seconds