• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 48
  • 11
  • 10
  • 9
  • 2
  • 1
  • Tagged with
  • 89
  • 89
  • 71
  • 51
  • 35
  • 22
  • 22
  • 20
  • 19
  • 16
  • 15
  • 14
  • 13
  • 13
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Nonlinear optical spectroscopic studies of polymer surface properties and competition adsorption of toluene and heptane on silica surfaces

Hua, Rui 11 1900 (has links)
Surface properties of polymers and competition adsorption of toluene and heptane on silica were studied using IR-visible sum frequency generation (SFG) vibrational spectroscopy. SFG is intrinsically surface sensitive because the second-order optical process is forbidden in media with inversion symmetry, such as bulk polymers and liquids. This nonlinear optical technique provides surface vibrational spectra under ambient conditions without the need of an ultra-high vacuum environment. Polymer surface properties, including surface relaxation temperature of poly(methyl methacrylate) (PMMA) and surface electronic states of poly[2-methoxy, 5-ethyl (2’-hexyloxy) para phenylenevinylene] (MEH-PPV), were investigated. It was found that there are significant differences between the surface and bulk properties for these polymers. For PMMA, a new surface structure relaxation was identified at 67°C, which does not match any known structure relaxation temperatures for bulk PMMA and is 40°C below the bulk glass transition temperature. For MEH-PPV, SFG electronic spectra, which were obtained by scanning the frequencies of incident visible and JR beams, indicated that the electronic states at the polymer/solid and air/polymer interfaces are red-shifted with respect to that of the bulk. Finally, SFG was employed to study the competition adsorption of toluene and heptane on silica surfaces. Experimental data showed that heptane adsorbed favorably compared to toluene. Using a Langmuir adsorption isotherm, the changes of Gibbs free energy for the adsorption processes were calculated to be —12.1 ± 1.8 (kJ/mol) for toluene and —16.5 ± 2.3 (kJ/mol) for heptane.
2

Nonlinear optical spectroscopic studies of polymer surface properties and competition adsorption of toluene and heptane on silica surfaces

Hua, Rui 11 1900 (has links)
Surface properties of polymers and competition adsorption of toluene and heptane on silica were studied using IR-visible sum frequency generation (SFG) vibrational spectroscopy. SFG is intrinsically surface sensitive because the second-order optical process is forbidden in media with inversion symmetry, such as bulk polymers and liquids. This nonlinear optical technique provides surface vibrational spectra under ambient conditions without the need of an ultra-high vacuum environment. Polymer surface properties, including surface relaxation temperature of poly(methyl methacrylate) (PMMA) and surface electronic states of poly[2-methoxy, 5-ethyl (2’-hexyloxy) para phenylenevinylene] (MEH-PPV), were investigated. It was found that there are significant differences between the surface and bulk properties for these polymers. For PMMA, a new surface structure relaxation was identified at 67°C, which does not match any known structure relaxation temperatures for bulk PMMA and is 40°C below the bulk glass transition temperature. For MEH-PPV, SFG electronic spectra, which were obtained by scanning the frequencies of incident visible and JR beams, indicated that the electronic states at the polymer/solid and air/polymer interfaces are red-shifted with respect to that of the bulk. Finally, SFG was employed to study the competition adsorption of toluene and heptane on silica surfaces. Experimental data showed that heptane adsorbed favorably compared to toluene. Using a Langmuir adsorption isotherm, the changes of Gibbs free energy for the adsorption processes were calculated to be —12.1 ± 1.8 (kJ/mol) for toluene and —16.5 ± 2.3 (kJ/mol) for heptane.
3

Nonlinear optical spectroscopic studies of polymer surface properties and competition adsorption of toluene and heptane on silica surfaces

Hua, Rui 11 1900 (has links)
Surface properties of polymers and competition adsorption of toluene and heptane on silica were studied using IR-visible sum frequency generation (SFG) vibrational spectroscopy. SFG is intrinsically surface sensitive because the second-order optical process is forbidden in media with inversion symmetry, such as bulk polymers and liquids. This nonlinear optical technique provides surface vibrational spectra under ambient conditions without the need of an ultra-high vacuum environment. Polymer surface properties, including surface relaxation temperature of poly(methyl methacrylate) (PMMA) and surface electronic states of poly[2-methoxy, 5-ethyl (2’-hexyloxy) para phenylenevinylene] (MEH-PPV), were investigated. It was found that there are significant differences between the surface and bulk properties for these polymers. For PMMA, a new surface structure relaxation was identified at 67°C, which does not match any known structure relaxation temperatures for bulk PMMA and is 40°C below the bulk glass transition temperature. For MEH-PPV, SFG electronic spectra, which were obtained by scanning the frequencies of incident visible and JR beams, indicated that the electronic states at the polymer/solid and air/polymer interfaces are red-shifted with respect to that of the bulk. Finally, SFG was employed to study the competition adsorption of toluene and heptane on silica surfaces. Experimental data showed that heptane adsorbed favorably compared to toluene. Using a Langmuir adsorption isotherm, the changes of Gibbs free energy for the adsorption processes were calculated to be —12.1 ± 1.8 (kJ/mol) for toluene and —16.5 ± 2.3 (kJ/mol) for heptane. / Science, Faculty of / Chemistry, Department of / Graduate
4

Vibrational sum frequency study on biological interfaces

Lim, Soon Mi 02 June 2009 (has links)
Vibrational sum frequency spectroscopy (VSFS) is a nonlinear optical process. The sum frequency signal is proportional to the square of second order nonlinear susceptibility, which is proportional to the average of polarizabilities of molecules, which is related to molecular orientation. Since the polarizabilities of molecules in bulk phase will be canceled out, a sum frequency signal can only be generated from interfaces where the inversion symmetry is broken. Because of its interfacial specificity, VSFS has been applied to study many interfacial phenomena. In this dissertation we investigated various biological interfaces with VSFS. Fibrinogen adsorption was studied at the protein/solid interface in combination with atomic force microscopy (AFM), immunoassay, and VSFS. Astonishing changes in the interfacial water orientation accompanied by the pH changes provided fibrinogen’s adsorption mechanism up to the amino acid level. Enzymatic fragmentation of fibrinogen revealed that the adsorption property of fibrinogen was mainly from the alpha C fragments of the protein. Mimicking of the fibrinogen binding site with polypeptides was successfully performed and showed very similar properties of fibrinogen adsorption. Protein stability is sensitive to the salts in solutions. The ability of ions to stabilize protein was ordered by Hofmeister in 1888 and the order is SO4 2- ≅ HPO4 2- > F- > Cl- > Br- > NO3 - > I- (≅ ClO4 -) > SCN-. Even though the phenomenon was observed in various biological systems, the origin of those ionic effects is still not well understood. We studied ion effects on alkyl chain ordering and interfacial water structure for octadecylamine, dimethyldidodecylammonium bromide, and dilauroylphosphotidyl choline monolayers. Because of its ability to probe a hydrophobic moiety and interfacial water at the same time, VSFS provided further information to understand the Hofmeister series. We found that the Hofmeister effect is a combinatorial effect of screening effects, ion binding, and dispersion forces.
5

Advancements in the Understanding of Nonlinear Optics and Their Use in Material Analysis

Averett, Shawn C. 01 August 2017 (has links)
Adhesion, heterogeneous catalysis, electrochemistry, and many other important processes and properties are driven by interactions at surfaces and interfaces. Vibrational sum frequency generation spectroscopy (VSFG) is an increasingly popular analytical technique because it can provide information about the nature and physical orientation of functional groups at these surfaces and interfaces. Analysis of VSFG data can be complicated by the presence of SFG signal that is not associated with a resonant vibration. This nonresonant sum frequency generation (NR-SFG) signal can interfere with the resonant signal and influence the detected spectrum. Methods have been developed to remove NR-SFG signal; however, these methods tend to be complicated and expensive. In fact many SFG practitioners do not have the ability to remove NR-SFG signal components, and systems designed to remove NR-SFG signal contributions may not be able to do so for some materials. We have worked to help develop a better understanding of NR-SFG. As part of this work, a better understanding of the temporal and phase behavior of NR-SFG signal has been developed, based on the behavior of NR-SFG signal from Si(111) wafers. This work calls into question some assumptions underlying nonresonant suppression methods based on time-domain detection. A new method for nondestructively testing (NDT) materials has been developed that uses nonresonant second harmonic generation, the degenerate form of SFG. This new NDT technology has the potential to detect several forms of material damage, such as aluminum sensitization, and plastic deformation of materials, which are largely invisible to current NDT technologies. Methods for extracting functional group orientation from VSFG data that contains NR-SFG contributions are also demonstrated and used to investigate how the surface of high density polyethylene changes in response to mechanical deformation. This work shows that the inability to remove NR-SFG contributions from VSFG spectra does not mean that these instruments cannot be used to make important discoveries. It simply means that NR-SFG contributions must be properly understood and accounted for during experimental design, and kept in mind during the analysis of VSFG spectra.
6

The development and application of a diode-laser-based ultraviolet absorption sensor for nitric oxide

Anderson, Thomas Nathan 30 September 2004 (has links)
This thesis describes the development of a new type of sensor for nitric oxide (NO) that can be used in a variety of combustion diagnostics and control applications. The sensor utilizes the absorption of ultraviolet (UV) radiation by the NO molecule to determine the concentration via optical absorption spectroscopy. UV radiation at 226.8 nm is generated by sum frequency mixing the outputs from a 395-nm external cavity diode laser (ECDL) and a 532-nm diode-pumped, intracavity frequency doubled Nd:YAG laser in a beta-barium borate (BBO) crystal. This radiation is used to probe the (v'=0, v"=0) band of the Α*Σ+ - Χ*π electronic transition of NO. The ECDL is tuned so that the UV radiation is in resonance with a specific energy level transition, and it is then scanned across the transition to produce a fully resolved absorption spectrum. Preliminary experiments were performed in a room-temperature gas cell in the laboratory to determine the accuracy of the sensor. Results from these experiments indicated excellent agreement between theoretical and experimental absorption line shapes as well as NO concentrations. Further experiments were performed at two actual combustion facilities to demonstrate the operation of the sensors in realistic combustion environments. Tests on a gas turbine auxiliary power unit (APU) at Honeywell Engines and Systems and on a well-stirred reactor (WSR) at Wright-Patterson Air Force Base produced excellent results despite the harsh temperatures and vibrations present. Overall, the sensitivity was estimated to be 0.8 parts per million (ppm) of NO (at 1000 K) for a 1 meter path length and the measurement uncertainty was estimated to be ±10%.
7

The development and application of a diode-laser-based ultraviolet absorption sensor for nitric oxide

Anderson, Thomas Nathan 30 September 2004 (has links)
This thesis describes the development of a new type of sensor for nitric oxide (NO) that can be used in a variety of combustion diagnostics and control applications. The sensor utilizes the absorption of ultraviolet (UV) radiation by the NO molecule to determine the concentration via optical absorption spectroscopy. UV radiation at 226.8 nm is generated by sum frequency mixing the outputs from a 395-nm external cavity diode laser (ECDL) and a 532-nm diode-pumped, intracavity frequency doubled Nd:YAG laser in a beta-barium borate (BBO) crystal. This radiation is used to probe the (v'=0, v"=0) band of the Α*Σ+ - Χ*π electronic transition of NO. The ECDL is tuned so that the UV radiation is in resonance with a specific energy level transition, and it is then scanned across the transition to produce a fully resolved absorption spectrum. Preliminary experiments were performed in a room-temperature gas cell in the laboratory to determine the accuracy of the sensor. Results from these experiments indicated excellent agreement between theoretical and experimental absorption line shapes as well as NO concentrations. Further experiments were performed at two actual combustion facilities to demonstrate the operation of the sensors in realistic combustion environments. Tests on a gas turbine auxiliary power unit (APU) at Honeywell Engines and Systems and on a well-stirred reactor (WSR) at Wright-Patterson Air Force Base produced excellent results despite the harsh temperatures and vibrations present. Overall, the sensitivity was estimated to be 0.8 parts per million (ppm) of NO (at 1000 K) for a 1 meter path length and the measurement uncertainty was estimated to be ±10%.
8

Specific Ion Effects on Interfacial Phenomena

Flores Araujo, Sarah 2011 December 1900 (has links)
A new interdisciplinary facet of chemistry has developed, as we attempt to comprehend complex interfacial phenomena in which ions play crucial roles. Understanding the mechanisms by which ions affect water at surfaces and interact with the molecules dissolved in it, pose a ubiquitous challenge with enormous implications for biological and physical sciences. These represent steps towards unraveling mechanisms in protein folding and crystallization, protein-protein interactions, enzymatic activity, implant biocompatibility, atmospheric chemistry phenomena, and even in more inorganic processes like metal oxide dissolution and corrosion; all of them fundamental technological challenges. In this thesis, the specific ion effects on interfacial water structure adjacent to air/water and solid/water interfaces were explored using vibrational sum frequency spectroscopy. At the air/water interface, monolayers of bovine serum albumin, elastin-like peptides, and surfactants, were analyzed in presence of subphases that consisted of different sodium salts and varying pH value. The results suggested that anions interact directly with the protein?s surface, and their effects on water structure are dominated by the charge state of the interfacial layer, rather than the detailed chemical structure of the macromolecules. At the solid/liquid interface, water structure at surfaces like quartz, octadecyltrichlorosilane-covered quartz, and titanium oxide, confirmed that the propensities of anions to adsorb at an interface are favored for more polarizable anions, following the Hofmeister order, and disproving the notion that the order of the interaction can be inverted with changes in charge sign or degree of hydrophobicity of the surface. Similarly, by analyzing interfacial water structure we performed one of the very first systematic studies on the interactions of cations with metal oxide surfaces. The results showed that specific cation effects were quite prominent at low concentration and high pH value, following a direct Hofmeister series, which can be explained in terms of charge density, polarizability, and basicity of the oxide surfaces. Our findings are of interest, since they provide with essential information not only to understand protein phenomena associated with neurodegenerative conditions like Alzheimer, but also by proving the generality of ion interactions beyond biological, we can even influence the development of the next generations of microprocessors and beyond.
9

Vibrational Sum Frequency Spectroscopic Investigations of Sulfur Dioxide Adsorption to Atmospherically Relevant Aqueous Surfaces

Ota, Stephanie Tomoko, 1978- 06 1900 (has links)
xv, 108 p. : ill. (chiefly col.) / Aqueous aerosol surfaces are an important platform for chemical reactions through which gases are transported in the atmosphere. The chemical complexity of aqueous aerosols is well-established, but many questions remain about the molecular nature of their surfaces, particularly with respect to the uptake of gases. The pollutant sulfur dioxide, SO<sub>2</sub>, has been implicated in environmental phenomena such as acid rain, climate change, and cloud formation. SO<sub>2</sub> is fundamentally interesting because it forms spectroscopically identifiable complexes with water at aqueous surfaces. This dissertation aims to understand how temperature and aqueous composition impact the formation of surface complexes between water and SO<sub>2</sub>. Vibrational sum frequency spectroscopy (VSFS), a surface specific technique, is used to probe the vibrational modes of water and small organic molecules, investigating changes to the overall orientation, bonding environment, and structure of interfaces when aqueous surfaces are exposed to SO<sub>2</sub>. SO<sub>2</sub> adsorption to water at tropospherically relevant temperatures (0--23 °C) is examined first. The results show enhanced SO<sub>2</sub> surface affinity at colder temperatures, with most of the topmost water molecules showing evidence of binding to SO<sub>2</sub> at 0 °C compared to a much lower fraction at room temperature. Surface adsorption results in significant changes in water orientation at the surface but is reversible at the temperatures examined. The surface and vibrational specificity of these studies can be used to distinguish between the effects of surface adsorption compared to bulk accommodation. This distinction is utilized to demonstrate that SO<sub>2</sub> complexation is independent of solution acidity, confirming that bulk absorption is unnecessary for surface adsorption to occur. Finally, the impact of the organic species succinic acid and formaldehyde on the formation of surface SO<sub>2</sub> complexes is examined. These experiments indicate that SO<sub>2</sub> surface complexation occurs primarily with water but that surface active organic species may interact with gases under certain circumstances, namely when the organic species are more chemically reactive towards the gas. These studies have important implications for atmospheric chemistry and the uptake of gases, particularly in the complex aqueous environments expected in the troposphere. / Committee in charge: Dr. Paul C. Engelking, Chair; Dr. Geraldine L. Richmond, Advisor Dr. Jeffrey A. Cina, Member; Dr. Thomas R. Dyke, Member; Dr. Alan D. Johnston, Outside Member
10

Spectroscopic and Thermodynamic Studies of the Adsorption of Atmospherically Relevant Dicarboxylic Acids at the Vapor/Water Interface

Blower, Patrick 03 October 2013 (has links)
Many important atmospheric processes are determined by the chemical composition of aerosols, including organic material. Dicarboxylic acids are a commonly detected class of organic material in urban, rural, and remote sites across the globe. Understanding the surface behavior of these molecules is imperative in characterizing the atmospheric fate of these molecules in aerosols, especially at an aerosol surface. In fact, little is known about their orientation, solvation, or pH dependence. This dissertation explores in molecular level detail the concentration and pH behavior of low molecular weight dicarboxylic acids at the air/water interface, which is used as a model for an aerosol surface. The solvation of the carboxylic head groups is shown to be dependent upon the length of the alkyl backbone. Indeed, the solvation of the head groups changes dramatically from very weakly solvated to typical surface solvation to near bulk solvation as the backbone increases. The orientation and conformation at the surface is fully explored to explain these differences in solvation. The pH dependence of surface adsorption is characterized, and it is shown that some acids are only surface active if they are fully protonated while others may still be surface active in singly or fully deprotonated forms. Using a combination of vibrational sum frequency spectroscopy (VSFS), surface tension, and computational modeling, the behavior at the air/water interface of four of the most relevant surface-active dicarboxylic acids (malonic, succinic, glutaric, and adipic acid) is completely described. VSFS, a surface specific optical technique, provides details about the solvation, orientation, and number density at the surface while surface tension measurements provide corollary information about the surface density. The use of computational modeling aids and confirms the spectral analysis while also providing molecular level details about the surface adsorption of the acids studied. By investigating the concentration and pH dependence of these molecules, molecular level detail is obtained which enables a complete description of these acids at an air/water interface and provides pertinent surface information on these atmospherically important organic molecules. This dissertation includes both previously published and unpublished co-authored material.

Page generated in 0.0717 seconds