• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 11
  • 2
  • 1
  • 1
  • Tagged with
  • 30
  • 30
  • 18
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Quasi-horizontal water vapour transport across the dynamical tropopause

Dethof, Antje January 1999 (has links)
No description available.
2

The East Asian Summer Monsoon : A comparison of present, Holocene and Eemian climate

Jacobson, Holger January 2014 (has links)
The East Asian Summer Monsoon (EASM) is a major component in Asian climate. It is largely driven by climatic factors such as humidity, solar insolation and temperature. For at least 50 years the EASM has been studied extensively by scientists regarding its current strength. Models have been recreating past monsoon intensity as well as attempted to predict future intensity. As the monsoon undergoes changes, the climatic shifts responsible for them leave various traces behind; geochemical as well as biological, and these have been preserved and recorded in various locales on the planet. The most significant climatic change is the variation between glacial and interglacial periods which have been alternating for the last 2.6 million years and the EASM has changed in tune with the climate during this time. The EASM follows the δ18O-record in speleothems found in Eastern Asia as well as in ice cores from Greenland. Various geochemical and biological tracers seem to reflect these fluctuations in climate locally as well as globally over a 200 kyr period. The current intensity of the EASM seems to be one of decreasing strength, a phase that has persisted since the Holocene climatic optimum 8.5 kyr ago. Recently however a decrease in the East Asian Winter Monsoon has been confirmed, indicating an increase in EASM intensity. During the Holocene the EASM reached peak intensity during the Holocene climatic optimum but has fluctuated largely in tune with solar insolation. This is also true for the Eemian period although some events such as the mid-Eemian cooling show that factors other than solar insolation regulate monsoon intensity over large time periods. The future of the EASM seems to be one of increased strength due to climate change and models predict both increased wind speeds and an increasing occurrence of extreme precipitation despite decreasing solar insolation.
3

A combined carbon and hydrogen isotope approach to reconstruct the SE Asian paleomonsoon : Impacts on the Angkor Civilization and links to paleolimnology

Yamoah, Kweku Kyei Afrifa January 2016 (has links)
Changes in monsoon patterns not only affect ecosystems and societies but also the global climate system in terms of heat energy and humidity transfer from the equator to higher latitudes. However, understanding the mechanisms that drive monsoon variability on longer timescales remains a challenge, partly due to sparse paleoenvironmental and paleoclimatic data. This thesis, which contributes new hydroclimate data sets for the Asian monsoon region, seeks to advance our understanding of the mechanisms that contributed to Southeast Asian summer monsoon variability in the past. Moreover, it explores how past climatic conditions may have impacted societies and ecosystems. In this study lake sediment and peat sequences from northeastern and southern Thailand have been investigated using organic geochemistry, and more specifically the stable carbon and hydrogen isotopic composition of specific biomarkers (n-alkanes, botryococcenes, and highly branched isoprenoids). The hydrogen isotopic composition of leaf waxes (δDwax) in Thailand was shown to relate to the amount of precipitation and the extent of the El Niño Southern Oscillation.  Higher values of δDwax can be interpreted as reflecting relatively dry climatic conditions, whereas lower values relate to wetter conditions. The hydroclimate reconstruction for northeastern Thailand, based on the sedimentary record of Lake Kumphawapi, suggests higher moisture availability between ca. 10,700 cal. BP and ca. 7,000 cal. BP likely related to a strengthened early Holocene summer monsoon. Moisture availability decreased during the mid-Holocene, but seems to have increased again around 2,000 years ago and has fluctuated since. The high-resolution Lake Pa Kho peat sequence, which allows for a sub-centennial reconstruction of moisture availability, indicates that the wettest period occurred between ca. 700 and ca. 1000 CE whereas driest intervals were from ca. 50 BCE to ca. 700 CE and from ca. 1300 to ca. 1500 CE. Hydroclimate comparison of Pa Kho’s δDwax record with other paleoclimate records from the Asian-Pacific region suggests that El Niño-like conditions led to Northeastern Thailand being wetter, whereas La Niña-like conditions led to drier conditions. Regional hydroclimate variability also greatly influenced the Angkor Civilization, which flourished between ca. 845 and ca. 1450 CE. The shift from drier to wetter conditions coincided in time with the rise of the Angkor Civilization and likely favored the intense agriculture needed to sustain the empire. The gradual decline in moisture availability, which started after ca. 1000 years CE, could have stretched the hydrological capacity of Angkor to its limit. It is suggested that Angkor’s population resorted to unconventional water sources, such as wetlands, as population growth continued, but summer monsoon rains weakened. The 150-year long record of Lake Nong Thale Prong in southern Thailand offers insights into decadal-scale hydroclimatic changes that can be connected to the instrumental record. δDwax-based hydroclimate was drier from ~1857 to 1916 CE and ~1970 to 2010 CE and wetter from ~1916 to 1969 CE. Drier climatic conditions between ~1857 and 1916 CE coincided with oligotrophic lake waters and a dominance of the green algae Botryococcus braunii. Higher rainfall between ~1916 and 1969 CE concurred with an increase in diatom blooms while eutrophic lake water conditions were established between ~1970–2010 CE. / <p>At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 2: Submitted. Paper 3: Manuscript.</p> / Monsoon project
4

Variations of Depositional Settings in the South China Sea: Implications Since the Late Neogene Sediments

Yang, Sheng-Yuan 28 June 2003 (has links)
Abstract The South China is the largest marginal sea in the western Pacific. It¡¦s unique geographic settings and high sedimentation rates preserve the paleo- climatic signals with larger amplitude than those from the open ocean. In this study, grain size and elemental compositions of the fine fractions (<63 mm) from the sediments collected by the ODP Leg 184 Sites 1143 and 1146 were analyzed to reconstruct the depositional settings for the last 8 My. Particle size and elements analyses, in conjunction with the carbonate contents and sedimentation rates from core sediments, reflect the possible increase in precipitation, which was caused by the strengthened summer monsoon between 5 and 3 Ma. In addition to the grain sizes change from silt-domain to clay-domain, Ti/Al ratio of sediments increase while the Si/Al, Zr/Al, and K/Al ratios decrease, which could be related to the enhanced sediments input through rivers. These environmental changes could be attributed to the uplift of Tibet plateau and the formation of Western Pacific Warm Pool. On the contrary, the impact of climate changes is not evident in the loess plateau in the northwestern China. It is likely that the climate in the South China Sea became warm and humid from 5 to 3 Ma were regional changes. Key words: Grain size, element analyses, South China Sea, summer monsoon
5

Dynamics of Summer Monsoon Current around Sri Lanka

Rath, Subham January 2016 (has links) (PDF)
Summer monsoon current (SMC) in the north Indian Ocean (NIO) is an open ocean current that flows eastward and enter into Bay of Bengal (BoB) during southwest monsoon (June–September). South of Sri Lanka, the SMC turns north-eastward instead of following eastward course and feeds into the BoB. Understanding the dynamics of SMC is crucial to understanding the interaction between Arabian sea (AS) and BoB. In the year 2009, the current moved north-eastward, meandered and then finally terminated into the southeast BoB. The northward bend of the current southeast of Sri Lanka has been attributed to the interaction of the eastward SMC with Rossby waves radiated from eastern boundary. An anticyclonic vortex formed right of the north-eastward meandering current which was associated with significantly high speeds. Reasons behind the unusually high speeds of SMC in this region remain unknown. Processes involved in the interaction of eddies with eastward SMC, the meandering of the current and its ultimate termination in southeast BoB are also not understood. Our study investigates the evolution, intensfication and meandering of SMC around Sri Lanka using an Indian Ocean general circulation model (MOM4p1) simulation for the year 2009. The model simulation, when compared with observational data OSCAR, showed good agreement. The study also explores the role of local and remote forcing in modulating the dynamics of SMC in the region. An eddy kinetic energy budget analysis for the region was performed which indicates the region to be a zone of significant eddy activity. Both barotropic, baroclinic instabilities were found to be the dominant mechanisms behind the generation of eddies. Based on eddy energetic analysis, the evolution of SMC was classified into stages i ii of onset, intensification, anticyclonic bend, anticyclonic vortices formation and meandering. Effect of eddies on mean flow were studied with the help of a transformed Eulerian mean (TEM) approach under quasi-geostrophic approximation. Eddy potential vorticity fluxes appearing in the TEM momentum equation and eddy enstrophy decay, divergence of eddy enstrophy advection from eddy enstrophy equation, helped to un-derstand when, where and how the eddies tended to drive the mean flow. Rossby waves and other westward propagating eddies arriving from the east, energise the SMC in June and induce an acceleration tendency on the mean flow through regions associated with upgradient eddy potential vorticity flux. In addition to the eddies, local winds also play a crucial role in driving the mean flow. Wind power, surface mean ocean kinetic energy and available potential energy (APE) were computed, integrated over the region of interest and compared to each other. The effect of local winds appear to be predominant in driving the mean flows as it not only increases the surface mean kinetic energy of the SMC but also raises the isopycnals and builds up large amount of APE in the ocean. Baroclinic instability takes place in late July and early August associated with the release of APE which flattens the isopycnals and thus weakens the SMC. Consequently the SMC meanders in course of time and flows into southeast BoB.
6

Některé aspekty dynamiky letního monsunu v Asii v reanalyzovaných meteorologických datech / Některé aspekty dynamiky letního monsunu v Asii v reanalyzovaných meteorologických datech

Jajcay, Nikola January 2013 (has links)
The Asian summer monsoon (ASM) is a high-dimensional and highly complex phenomenon affecting more than one fifth of the world population. The intraseasonal component of the ASM undergoes periods of active and break phases associated respectively with enhanced and reduced rainfall over the Indian subcontinent and surroundings. In this thesis the nonlinear nature of the intraseasonal monsoon variability is investigated using the leading Empirical Orthogonal Functions of ERA-40 sea level pressure reanalyses field over the ASM region. The probability density function is then computed in spherical coordinates using the Epaneshnikov kernel method. Three significant modes are identified. They represent respectively (i) the East - West mode with above normal sea level pressure over East China sea and below normal pressure over Himalayas, (ii) the mode with above normal sea level pressure over East China sea (without compensating centre of opposite sign as in (i)) and (iii) the mode with below normal sea level pressure over East China sea (same as (ii) but with opposite sign). The relationship with large-scale forcing is also investigated by stratifying the PCs according to representing indices. The regimes derived from spherical PDFs appear to be opposite under opposite large-scale conditions. EOF technique with...
7

Sub-orbital scale variations in the intensity of the Arabian Sea Monsoon

Ivanochko, Tara S. January 2005 (has links)
A high-resolution multi-proxy reconstruction of the Arabian Sea Summer Monsoon (ASSM) intensity over the past 90,000 years has been determined using two marine sediment cores: one from the Somali margin and one from the Indian margin. This reconstruction indicates that changes in monsoon- induced upwelling, primary productivity and denitrification have varied in synchrony with Dansgaard-Oeschger (D-O) cycles. Increased monsoon intensity correlates with warm climate events (interstadials) and decreased monsoon intensity, which coincides with stadials and Heinrich Events, is confirmed by elevated dust concentrations in the marine cores. A comparison of the Somali and Indian margin cores with previously reported studies from the Northern and Western Basin allows the identification of discrete sediment signals from the Indus River, the Arabian Peninsula and from local riverine runoff. Sedimentary deposition on the Indian margin during interglacials is dominated by local terrestrial runoff, whereas during glacial periods increased dust input from the Arabian Peninsula is evident. Both signals are related to changes in the intensity of the ASSM. Monsoon intensity has decreased during the Holocene as the Intertropical Convergence Zone (ITCZ) has moved to a more southerly position. The ASSM-ITCZ relationship (increased ASSM intensity and a northern ITCZ, decreased ASSM intensity and a southern ITCZ) has remained consistent over the last glacial cycle suggesting that global millennial scale climatic variability is in part driven by modulations in tropical hydrological cycle. This ASSM reconstruction provides evidence that rearrangements in the tropical convection system affected atmospheric dust concentrations as well as the concentration and location of atmospheric water vapour. In addition to modulating terrestrial and marine emissions of greenhouse gases, variation in the tropical hydrological cycle provides a mechanism of amplifying and perpetuating millennial-scale climatic changes.
8

Reconstructing Holocene Indian Summer Monsoon Variability Using High Resolution Sediments from the Southeastern Tibet

Perello, Melanie Marie 12 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / The Indian summer monsoon (ISM) is the dominant hydrometeorological phenomenon that provides the majority of precipitation to southern Asia and southeastern Tibet specifically. Reliable projections of ISM rainfall are critical for water management and hinge on our understanding of the drivers of the monsoon system and how these drivers will be impacted by climate change. Because instrumental climate records are limited in space and time, natural climate archives are required to understand how the ISM varied in the past in response to changes in climatic boundary climate conditions. Lake sediments are high-resolution natural paleoclimate archive that are widely distributed across the Tibetan Plateau, making them useful for investigating long-term precipitation trends and their response to climatic boundary conditions. To investigate changes in monsoon intensity during the Holocene, three lakes were sampled along an east-west transect in southeastern Tibet: Galang Co, Nir’Pa Co, and Cuobu. Paleoclimate records from each lake were developed using isotopic (leaf wax hydrogen isotopes; δ2H), sedimentological, and geochemical proxies of precipitation and lake levels. Sediments were sampled at high temporal frequencies, with most proxies resolved at decadal scales, to capture multi-decadal to millennial-scale variability in monsoon intensity and local hydroclimate conditions. The ISM was strongest in the early Holocene as evidenced by leaf-wax n-alkane δ2H at both Cuobu and Galang Co corresponding with Cuobu’s higher lake levels and effective moisture. Monsoon intensity declined at Cuobu and Galang Co around 6 ka which corresponds to reduced riverine sediment influxes at Cuobu and deeper lake levels at Galang Co. The antiphase relationship between lake levels and monsoon intensity at Galang Co is attributed to air temperatures and effective moisture, with a warmer and drier local hydroclimate driving early Holocene low lake levels. The late Holocene ISM was more variable with wet and dry periods, as seen in the Nir’Pa Co lake level and leaf wax n-alkane δ2H record. These records demonstrate coherent drivers of synoptic and local hydroclimate that account for Holocene ISM expression across the southeastern Tibetan Plateau, indicating possible drivers of future monsoon expression under climate change.
9

Interannual Variation of Monsoon in a High Resolution AGCM with Climatological SST Forcing

Ghosh, Rohit January 2013 (has links) (PDF)
Interannual variation of Indian summer (June-September: JJAS) monsoon rainfall (ISMR) depends on its relative intensity during early (June-July: JJ; contribution 52%) and late (August-September: AS; contribution 49%) phases. Apart from variations in sea surface temperature (SST), the primary reasons behind the variability during JJ and AS can be very different due to change in climatic conditions on account of post-onset processes. Here, using a high resolution general circulation model with seasonally varying climatological SST, mechanisms those govern the intensity of rainfall during JJ and AS are investigated. There is no significant relation-ship between intensity of precipitation over Indian region in JJ and AS. Moreover, the factors determining early monsoon (JJ) precipitation are different than that for late monsoon (AS). In absence of interannual SST variation, pre-monsoon soil moisture do not play a significant role for the interannual variation of monsoon precipitation over India. A large scale oscillation of the ITCZ is noticed on interannual time scale spanning from around 60◦E to 150◦E that brings spatially coherent flood and drought over this region. Early monsoon precipitation has a larger dependency on spring snow depth over Eurasia and phase of the upper tropospheric Rossby wave in May. However, late monsoon precipitation over India is mainly governed by the intensity and time scale of the intraseasonally varying convective cloud bands. This study suggests that early monsoon (JJ) precipitation over Indian region is more correlated with pre-monsoon signatures of land-atmosphere parameters. However, in later parts after the onset (AS), the monsoon intensity is primarily driven by its internal dynamics and characteristics of intraseasonal oscillation.
10

Lake sediments as climate and tectonic archives in the Indian summer monsoon domain

Ambili, Anoop January 2012 (has links)
The Indian summer monsoon (ISM) is one of the largest climate systems on earth and impacts the livelihood of nearly 40% of the world’s population. Despite dedicated efforts, a comprehensive picture of monsoon variability has proved elusive largely due to the absence of long term high resolution records, spatial inhomogeneity of the monsoon precipitation, and the complex forcing mechanisms (solar insolation, internal teleconnections for e.g., El Niño-Southern Oscillation, tropical-midlatitude interactions). My work aims to improve the understanding of monsoon variability through generation of long term high resolution palaeoclimate data from climatically sensitive regions in the ISM and westerlies domain. To achieve this aim I have (i) identified proxies (sedimentological, geochemical, isotopic, and mineralogical) that are sensitive to environmental changes; (ii) used the identified proxies to generate long term palaeoclimate data from two climatically sensitive regions, one in NW Himalayas (transitional westerlies and ISM domain in the Spiti valley and one in the core monsoon zone (Lonar lake) in central India); (iii) undertaken a regional overview to generate “snapshots” of selected time slices; and (iv) interpreted the spatial precipitation anomalies in terms of those caused by modern teleconnections. This approach must be considered only as the first step towards identifying the past teleconnections as the boundary conditions in the past were significantly different from today and would have impacted the precipitation anomalies. As the Spiti valley is located in the in the active tectonic orogen of Himalayas, it was essential to understand the role of regional tectonics to make valid interpretations of catchment erosion and detrital influx into the lake. My approach of using integrated structural/morphometric and geomorphic signatures provided clear evidence for active tectonics in this area and demonstrated the suitability of these lacustrine sediments as palaleoseismic archives. The investigations on the lacustrine outcrops in Spiti valley also provided information on changes in seasonality of precipitation and occurrence of frequent and intense periods (ca. 6.8-6.1 cal ka BP) of detrital influx indicating extreme hydrological events in the past. Regional comparison for this time slice indicates a possible extended “break-monsoon like” mode for the monsoon that favors enhanced precipitation over the Tibetan plateau, Himalayas and their foothills. My studies on surface sediments from Lonar lake helped to identify environmentally sensitive proxies which could also be used to interpret palaeodata obtained from a ca. 10m long core raised from the lake in 2008. The core encompasses the entire Holocene and is the first well dated (by 14C) archive from the core monsoon zone of central India. My identification of authigenic evaporite gaylussite crystals within the core sediments provided evidence of exceptionally drier conditions during 4.7-3.9 and 2.0-0.5 cal ka BP. Additionally, isotopic investigations on these crystals provided information on eutrophication, stratification, and carbon cycling processes in the lake. / Der Indische Sommer Monsun (ISM) ist eines der bedeutendsten Klimaphänomene auf der Erde und hat großen Einfluss auf die Lebensbedingungen und -grundlagen von nahezu 40% der Weltbevölkerung. Trotz großer Bemühungen ist es bisher nicht gelungen ein genaues und umfassendes Verständnis der Monsun-Variabilität zu gewinnen. Hauptgründe dafür sind das Fehlen von langjährigen und hochaufgelösten Klimazeitreihen, räumlichen Inhomogenitäten in den Niederschlagsverteilungen und die Komplexität der treibenden klimatischen Mechanismen (Sonneneinstrahlung, interne Wechselwirkungen des Klimasystems, wie z.B. zwischen Tropen und mittleren Breiten oder die Auswirkungen der El Niño Oszillation). Die Zielsetzung der hier vorgestellten Arbeit ist ein verbessertes Verständnis der Monsun-Variabilität zu entwickeln, auf Basis von hochaufgelösten und weit reichenden Paläoklimazeitreihen aus klimasensitiven Regionen des ISM und der Westwindzone. Um die Zielsetzung umzusetzen habe ich: (i) Proxys identifiziert (sedimentologische, geochemische, isotopische, und mineralogische), die empfindlich auf Umweltveränderungen reagieren; (ii) die identifizierten Proxys zur Erzeugung von langjährigen Paläoklima-Daten für zwei klimasensible Regionen verwendet, eine im NW des Himalaja (Übergangs-Westwindzone und ISM Gebiet von Spity Valley) und eine in der Kernzone des Monsun (Lonar-See) in Zentralindien; (iii) Übersichts-"Momentaufnahmen" der regionalen klimatischen Bedingungen für ausgewählte Zeitpunkte der Vergangenheit erzeugt; und (iv) räumliche Niederschlagsanomalien in Hinblick auf heutige Wechselbeziehungen im Klimasystem interpretiert. Dieser Ansatz stellt allerdings nur einen ersten Schritt zur Identifizierung von paläoklimatischen Wechselbeziehungen im Monsunsystem dar, da sich die Randbedingungen in der Vergangenheit deutlich von den heutigen unterscheiden und diese einen signifikanten Einfluss auf die Niederschlagsanomalien haben. Da das Spity Valley im tektonisch aktiven Himalaja-Orogen lokalisiert ist, ist es von entscheidender Bedeutung die regionalen tektonischen Prozesse zu verstehen, um Erosionsvorgänge des Einzugsgebiets und die Einfuhr von Detritus in den See korrekt interpretieren zu können. Mein Ansatz der Nutzung kombinierter strukturell/morphometrischer und geomorphologischer Charakteristiken lieferte klare Beweise für aktive Tektonik im untersuchten Gebiet und demonstrierte damit die Eignung dieser lakustrinen Sedimente als paläoseismisches Archiv. Die Untersuchung lakustriner Aufschlüsse in Spity Valley lieferte auch Informationen saisonale Änderung der Niederschlagsverteilung sowie das Auftreten von häufigen und intensiven Perioden (ca. 6,8-6,1 cal ka BP) detritischer Einfuhr, welche auf extreme hydrologische Ereignisse in der Vergangenheit schließen lässt. Ein regionaler Vergleich dieser Periode deutet auf einen möglicherweise erweiterten „break-monsoon-like“ Modus für den Monsun hin, welcher hohe Niederschläge über dem Tibetischen Plateau, dem Himalaja und seinen Gebirgsausläufern begünstigt. Meine Studien an den Oberflächensedimenten des Lonar-Sees haben dazu beigetragen umweltsensitive Proxys zu identifizieren, die auch zur Interpretation von Paläodaten von einem ca. 10 m langen Sedimentkern genutzt wurden, der 2008 erbohrt wurde. Der Kern umfasst das gesamte Holozän und stellt das erste gut 14C-datierte Archiv aus der Kernmonsunzone Zentralindiens dar. Die Identifizierung von authigenen Evaporit-Kristallen (Gaylussite) innerhalb der Sedimente liefert einen Beweis für ungewöhnlich trockene Bedingungen in den Perioden zwischen 4,7-3,9 und 2,0-0,5 cal ka BP. Darüber hinaus lieferten Isotopen-Untersuchungen dieser Kristalle Informationen zur Eutrophierung, Stratifikation und zum Kohlenstoff-Kreislauf des Sees.

Page generated in 0.0701 seconds