• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Phase Transition of the Normal Metallic State to the Antiferromagnetic Spin Density Wave State in (TMTSF)2PF6

Caldwell, Robert January 2003 (has links)
Thesis advisor: Michael Naughton / A helium gas-pressure system has been tested and then used to investigate the nature of a phase transition from the normal metallic state to an antiferromagnetic spin density wave state in the quasi-one dimensional molecular organic conductor (TMTSF)2PF6. This metallic state superconducts at low temperature and high pressure, in such a way that the insulating antiferromagnetic state competes with the superconducting state. The physics motivation was to examine the possibility of a ¿quantum critical point¿ near the critical pressure of the sample where these latter two states may coexist. The technical motivation was to make the first tests of the pressure system at cryogenic temperatures to ensure that it is the appropriate tool for the planned investigations. Using temperature sweeps at various fixed pressures on a single crystal sample, we were able to obtain several points on the pressure versus temperature phase boundary separating the metallic and SDW states. We have thus verified that the helium gas-pressure system is indeed capable of facilitating these types of experiments, and future measurements will be done at lower temperatures accessing the superconducting state. / Thesis (BS) — Boston College, 2003. / Submitted to: Boston College. College of Arts and Sciences. / Discipline: Physics. / Discipline: College Honors Program.

Page generated in 0.088 seconds