• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 203
  • 31
  • 24
  • 16
  • 7
  • 4
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 363
  • 69
  • 56
  • 55
  • 53
  • 52
  • 47
  • 46
  • 41
  • 41
  • 36
  • 33
  • 31
  • 29
  • 29
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Magnesium Diboride Devices and Applications

Melbourne, Thomas January 2018 (has links)
Magnesium diboride MgB2 is an interesting material that was discovered to be a superconductor in 2001. It has a remarkably high critical temperature of 39 K which is much greater than was previously thought possible for a phonon-mediated superconductor. MgB2 was also the first material found to exhibit multiple gap superconductivity. It has two energy gaps, the pi gap with a value of 2.3 meV, and the sigma gap with a value of 7.1 meV. Both the high critical temperature and the multiple large energy gaps make MgB2 an attractive candidate for superconducting devices. While the initial discovery of MgB2 was accompanied by much excitement, the enthusiasm has mostly disappeared due to the lack of progress made in implementing MgB2 in practical devices. The aim of this thesis is to attempt to reinvigorate interest in this remarkable material through a study of a variety of practical superconducting devices made with MgB2 thin films grown by hybrid physical-chemical vapor deposition (HPCVD). Two different methods of fabricating MgB2 Josephson junctions are explored. The first is a sandwich type trilayer configuration with a barrier made by magnetron sputtered MgO. Junctions of this sort have been previously studied and implemented in a variety of devices. While they do show some attractive properties, the on-chip spread in critical current due to barrier non-uniformity was too high to be considered a viable option for use in many-junction devices. By developing a fabrication scheme which utilizes electron beam lithography, modest improvements were made in the on-chip parameter spread, and miniaturization of junction size yielded some insight into the non-uniform barriers. The second approach of creating MgB2 Josephson junctions utilized a planar geometry with a normal metal barrier created by irradiating nano-sized strips of the material with a focused helium ion beam. The properties of these junctions are investigated for different irradiation doses. This new technique is capable of producing high quality junctions and furthermore the parameter spread is greatly reduced as compared to the sandwich type junctions. While more research is necessary in order to increase the IcRn products, these junctions show promise for use in many-junction devices such as RSFQ circuits. Prior to this work, the largest substrates that could be coated with HPCVD grown MgB2 were 2" in diameter. A new chamber was designed and constructed which demonstrated the ability to coat substrates as large as 4". This scaled-up system was used to grow MgB2 films on 1 x 10 cm flexible substrates. A method of fabrication was developed which could pattern these 10 cm long samples into ribbon cables consisting of many high frequency transmission lines. This technology can be utilized to increase the cooling efficiency of cryogenic systems used for RSFQ systems which require many connections between low temperature and room temperature electronics. Finally, a method of producing MgB2 films with thicknesses as low as 8 nm was developed. This is achieved by first growing thicker films and using a low angle ion milling step to gradually reduce the film thickness while still maintaining well connected high quality films. A procedure was developed for fabricating meandering nanowires in these films with widths as low as 100 nm for use as superconducting nanowire single photon detectors (SNSPDs). A study of the transport properties of these devices is first presented. Measurements show low values of kinetic inductance which is ideal for high count rates in SNSPDs. The kinetic inductance measurements also yielded the first measurements of the penetration depth of MgB2 films in the ultra-thin regime. Devices made from these ultra-thin films were found to be photon sensitive by measurements made by our collaborators. / Physics
82

Shaped Superconducting Films For Electronic Functions

Narayana, T Badiri 07 1900 (has links) (PDF)
No description available.
83

Superconducting Transformer Design and Construction

Chew, En Phin January 2010 (has links)
This thesis first outlines the testing undertaken on a partial core superconducting transformer under open circuit, short circuit, full load and endurance test conditions. During the endurance test, a failure occurred after 1 minute and 35 seconds. During the failure, voltage dipping and rapid liquid nitrogen boil off was observed. This prompted a failure investigation which concluded that the lack of cooling in the windings was the most probable cause to the failure. Full core transformer and superconductor theories are then introduced. A copper winding transformer model, based on a Steinmetz equivalent circuit and a reverse design method, is described. A superconductor loss model which outlines the different types of losses experienced under AC conditions is used to determine the resistance of the windings in the Steinmetz equivalent circuit. This resistance changes with the magnitude of current and the strength of the magnetic field that is present in the gaps between each layer of the windings. An alternative leakage flux model is then presented, where the flux is modelled based on the combination of the reluctance of the core and the air surrounding the windings. Based on these theories, an iterative algorithm to calculate the resistance of the superconductor is developed. A new design of a 15kVA single phase full core superconducting transformer, operating in liquid nitrogen, is presented. The issues with building the superconducting transformer are outlined. First, a copper mockup of the superconducting transformer was designed where the mockup would have the same tape and winding dimensions as the superconducting transformer, which means the same core can be used for two different sets of windings. This led to designing a core that could be easily taken apart as well as reassembled. Construction of the core, the copper windings and the superconductor windings ensued. The process of cutting the core laminations, insulating the copper and superconductor tapes, and making the steel fasteners and terminations are described. The copper mockup and superconducting transformers was then tested under open circuit, short circuit, different load and endurance conditions at both liquid nitrogen and room temperatures. These test results were then compared with the those from two models. The comparison showed a significant inaccuracy in the reactances in the models. This introduced a correction factor into the superconductor model which ii made it more accurate. However, further work is required to explain and quantify the correction factors for the copper transformer model under different load conditions.
84

Transmission electron microscopy study of novel semiconductor heterostructures and high Tc superconductors

Xin, Yan January 1996 (has links)
No description available.
85

In situ measurement of the cohesion of a cemented alluvial soil

Muller, Eugene, 1951- January 1989 (has links)
A modified plate load (MPL) test was developed to measure the in situ cohesion of a carbonate or caliche cemented soil. The MPL test was performed on the crest of a vertical cut in alluvial soil with a steel plate loaded until the soil failed. A three-dimensional slope stability analysis was then used to back calculate soil cohesion. In situ test results were used in conjunction with laboratory testing of deaggregated soils samples to completely define the Mohr-Coulomb strength parameters of the in situ soil. In order to check the result of the in situ test procedure, the field test conditions were modeled for use in a two-dimensional slope stability analysis using the computer program CSLIP1. A comparison of the results shows reasonable values of soil cohesion were obtained using the MPL test method.
86

Preparation and characterization of superconducting Bi-2212/Ag composite tapes

Huang, Sun-Li January 1996 (has links)
No description available.
87

Development and verification of an apparatus for thermal resistance and thermal conductivity measurements

Kalkundri, Kaustubh. January 2006 (has links)
Thesis (M.S.)--State University of New York at Binghamton, Mechanical Engineering Department, 2006. / Includes bibliographical references.
88

Third harmonic microwave generation by superconductors /

Wilfley, Brian Patrick, January 1983 (has links)
Thesis (Ph. D.)--University of California, San Diego, 1983. / Vita. Includes bibliographical references (leaves 156-159).
89

Third harmonic microwave generation by superconductors

Wilfley, Brian Patrick, January 1983 (has links)
Thesis (Ph. D.)--University of California, San Diego, 1983. / Vita. Bibliography: leaves 156-159.
90

Controlling Quantum Information Devices

Motzoi, Felix January 2012 (has links)
Quantum information and quantum computation are linked by a common mathematical and physical framework of quantum mechanics. The manipulation of the predicted dynamics and its optimization is known as quantum control. Many techniques, originating in the study of nuclear magnetic resonance, have found common usage in methods for processing quantum information and steering physical systems into desired states. This thesis expands on these techniques, with careful attention to the regime where competing effects in the dynamics are present, and no semi-classical picture exists where one effect dominates over the others. That is, the transition between the diabatic and adiabatic error regimes is examined, with the use of such techniques as time-dependent diagonalization, interaction frames, average-Hamiltonian expansion, and numerical optimization with multiple time-dependences. The results are applied specifically to superconducting systems, but are general and improve on existing methods with regard to selectivity and crosstalk problems, filtering of modulation of resonance between qubits, leakage to non-compuational states, multi-photon virtual transitions, and the strong driving limit.

Page generated in 0.0826 seconds