Spelling suggestions: "subject:"supercritical dioxide""
1 |
Experimental Determination And New Correlations For Multi-Component Solid Solubilities In Supercritical Carbon DioxideReddy, N Siva Mohan 10 1900 (has links) (PDF)
The fluids that are operated above their critical temperature and pressure are
known as supercritical fluids (SCFs). SCFs replaces the conventional organic solvents
in the chemical processes due to their attractive properties such as liquid like
densities, gas like diffusivities, negligible surface tension, lower viscosity and high compressibility. Carbon dioxide, being non-toxic, non-flammable with ambient
critical temperature and moderate critical pressure, is the most widely used SCF in
many chemical processes. Supercritical carbon dioxide (SCCO2) finds applications in
industrial processes such as extraction and separation processes. The feasibility of a
supercritical process can be determined from the solubility of solute in SCF. For the
efficient design of a SCF process, the effects of temperature and pressure on the
solubility of a solid should be examined thoroughly. In general, the solute of interest is not present alone; it is present along with many other components in the compound. The solute has to be extracted or separated from matrix of components. Therefore, it is important to determine the mixture solubilities in SCCO2.
The mixture solubility of a solute is not same as that of pure component solubility. The presence of the other component alters the solubility of the solute to a greater extent; hence the effects of the other components present along with the solute, temperature and pressure need to be known to understand the mixture behavior of the solute in SCCO2. The solubilities of solid isomers (ortho-, meta-, para-) in SCCO2 vary to a greater extent. This huge difference in the solubilities of isomers is due to interactions between the molecules. The high solubility of an isomer in SCCO2 might be due to the solute-solvent interactions. The interactions between the molecules are significant in the solid mixtures solubilities in SCCO2. This research
work focuses on experimental determination and modeling of mixture solubilities of
solids in SCCO2.
The solubilities of several pairs of isomers have been experimentally determined at different temperatures and pressures. These include the ternary solubilities of ntrophenols, nitrobenzoic acids and dihydroxy benzene isomers mixtures in SCCO2. The experimental solubilities of nitrophenol (meta- and para-) isomers mixture have been determined. This study includes the effect of temperature, pressure and each isomer on the ternary mixture solubilities of nitrophenol mixtures. The enhancements in the ternary solubilities of nitrophenols over their binary solubilities and the selectivity of SCCO2 for the nitrophenol mixture have been discussed in detail. The solubilities of dihydroxy benzene (ortho-: pyrocatechol, meta- : resorcinol and para-: hydroquinone) isomers in SCCO2 have been determined at various temperatures and pressures. The ternary solubilities of pyrocatechol and resorcinol and quaternary solubilities of pyrocatechol, resorcinol and hydroquinone mixtures in SCCO2 have been investigated. The effect of each isomer on the mixture solubilities of other isomers has been included in this work. Selectivity for dihydroxy benzene isomers and variation of solubilities enhancements with temperature and pressure has been presented in this study. The equilibrium mixture solubilities of nitrobenzoic acid isomers (meta- and para) mixture have been studied. The variation of mixture solubilities and their enhancements with temperature and pressure has been thoroughly analyzed. Selectivity of SCCO2 for this nitrobenzoic acid mixture has been studied in detail.
The increase or decrease in the ternary solubilities of the solid mixtures that
have been considered in this study is due to the interactions between the molecules.
The ternary solubilities of m-nitrophenol increase whereas they decrease for pnitrophenol for the nitrophenol solid mixture. Quaternary solubilities of dihydroxy
benzene isomers (pyrocatechol + resorcinol + hydroquinone) increases compared to
their pure component solubilities. The ternary solubilities of pyrocatechol increases while resorcinol decreases over the pressure range at different temperatures (except 338 K) considered in this study. The mixture solubilities of p-nitrobenzoic acid of nitrobenzoic acid isomers increase to a greater extent. An average of separation
efficiency of 70%, 85% and 90% has been observed for ternary solid mixtures of
nitrophenol, nitrobenzoic acid and dihydroxy benzene isomers respectively.
Modeling of high pressure multi-component systems is useful to understand the behavior of the mixtures. Moreover, the experimental determination of multicomponent solubilities of solids in SCCO2 is tedious and time consuming; hence the modeling of mixture solubilities is essential. The interactions between the molecules have been incorporated in the association theory and a five parameter equation with two constraints has been derived for binary systems. The new equation correlates the solubilities of m-dinitrobenzene in this study along with 72 other systems available in literature.
Seven new model equations have been developed to correlate ternary (2 for
cosolvent (solid + cosolvent + SCCO2) systems; 5 for solid mixtures in SCCO2)
solubilities of solids in SCCO2. A new model equation for cosolvent ternary systems
has been derived by using the concepts of association of molecules. The model equation contains seven adjustable parameters with three constraints and correlates mixture solubilities in terms of temperature, pressure, density and cosolvent composition. The interactions between the molecules have been included in the association theory then the number of parameters decreased to five with two constraints. The performance of the newly developed equations has been evaluated for 32 ternary systems with various cosolvents along with experimental data of mdinitrobenzene in methanol cosolvent of this study.
The same association theory has been extended to ternary (solid mixtures +
SCCO2) solubilities of solids in SCCO2 and two new equations have been derived with and without incorporating interactions between the molecules. Both the equations have five adjustable parameters with three constraints for the equation which has been derived from association theory alone and two constraints for the equation which has been derived by considering the interactions between the
molecules in the association theory. A new model equation has been derived by combining solution model with Wilson activity coefficient model to account for nonidealities of the solute. This equation has four adjustable parameters and no
constraints on the parameters. The non-idealities of both solutes in the solution model have been included and two more equations with no constraints on the parameters have been developed. One equation uses NRTL activity coefficient model which
results in three adjustable parameters while the other equation with five parameters
has been obtained from Wilson activity coefficient model for solid mixtures
solubilities in SCCO2. The performance of the newly developed equations has been
evaluated for the solid mixtures (ternary systems) in SCCO2. The equations with
constraints make them limited for few systems and the equations with no constraints
are able to correlate the solubilities of solids of all the ternary systems that are
available in literature along with the generated ternary experimental data of this study.
The quaternary solubilities of solids have been correlated by using a five parameter model equation which has been derived by combining solution and Wilson activity coefficient models. The equation for the quaternary systems does not have constraints on the parameters; hence can be applied for quaternary systems. The equation correlates the quaternary solubilities of solids in terms of temperature, pressure, density and cosolute compositions.
Chapter 1 gives a brief introduction on the solubilities of solid mixtures and their behavior in SCCO2. Chapter 2 presents the experimental setup and the solubility
data of binary, ternary and quaternary systems determined in this study. Chapter 3
focuses on the models that have been derived to correlate the solubilities of solids in
SCCO2. Chapter 4 discusses in detail about the results obtained in this research work.
Chapter 5 briefly summarizes the work and presents major conclusions. The new equations that have been developed here are first of its kind for the ternary and quaternary systems. These equations give information about the nonidealities of the systems. The nature of the interactions between the molecules can be determined from the parameters of the equations which incorporate interactions between the molecules. The multi-component solubilities of the solids can be correlated by using the semi-empirical equations that have been derived in this research.
|
2 |
Kinetika i modelovanje ekstrakcije ulja iz bobica kleke (Juniperus communis L.) i semenki tikve (Cucurbita pepo L.) natkritičnim ugljendioksidom / Kinetics and mathematical modeling of juniper berry (Juniperus communis L.) essential oil and pumpkin seed (Cucurbita pepo L.) oil by supercritical carbondioxideNikolovski Branislava 18 December 2009 (has links)
<p>U radu su prikazani eksperimentalni rezultati natkritične ekstrakcije etarskog ulja bobica<br />kleke (<em>Juniperus communis</em> L.) i ulja iz semena uljane tikve golice (<em>Cucurbita pepo</em> L.). Ispitan je uticaj pritiska, temperature, stepena usitnjenosti čestica i protoka natkritičnog<br />ugljendioksida na promenu prinosa ulja sa vremenom. U cilju poređenja, usitnjeno seme uljane tikve ekstrahovano je i u ekstraktoru većih dimenzija, NOVA-SWISS, High<br />pressure extraction plant, kao i heksanom i petroletrom u ekstraktoru tipa Sokslet.<br />Praćena je i promena kvaliteta ekstrakata sa vremenom: u etarskom ulju kleke, GC-FID i GC-MS metodama, određen je relativni sadržaj 50 terpenskih jedinjenja i sve komponente ulja su svrstane u 5 osnovnih grupa (monoterpene, seskviterpene, oksidovane monoterpene, oksidovane seskviterpene i ostale komponente). U tikvinom ulju ekstrahovanom natkritičnim ugljendioksidom određen je masnokiselinski sastav GC-MS analizom, sadržaj tokoferola HPLC analizom, sterola i skvalena GC-MS metodom. Određeni su uslovi koji favorizuju ekstrakciju ispitanih jedinjenja za obe sirovine. Dat je dateljan prikaz matematičkih modela koji se koriste za opisivanje natkritične ekstrakcije etarskih ulja i masnih ulja, počevši od najopštijeg modela koji uključuje diferencijalne bilanse mase za rastvorak u masi natkritičnog fluida, u fluidu unutar pora čestica usitnjenog matrijala i u čvrstoj fazi, koji se uvođenjem određenih pretpostavki pojednostavljuje i svodi na modele koji su izabrani da budu ispitani u okviru ovoga rada. Ispitani su modeli kreireni po analogiji sa hlađenjem vrele kugle u masi fluida, tj. modeli tipa jedne sfere i to: Model jedne sfere-1 (MJS-1), koji pored uticaja koeficijenta efektivne difuzije ulja u materijalu na brzinu prenosa mase uzima u obzir uticaj koeficijenta prenosa mase kroz film natkritičnog fluida oko čestice, pri čemu je njegova vrednost procenjena preko postojećih korelacija; MJS-1 (2 par), u kome je spoljašnji koeficijent prenosa mase uzet kao drugi prilagodljiv parametar modela; MJS-2, gde je koeficijent efektivne difuzije jedini prilagođeni parametar, Model karakterističnog vremena i prošireni model klipnog toka koji je predložila Sovová. Za modelovanje natkritične ekstrakcije ulja semena tikve korišćen je i kombinovani model Honga i sar. Softverskim paketima Mathcad 2001 Professional i Solver dodatka unutar Microsoft Excel 2003, određeni su parametri ispitanih modela u cilju najboljeg slaganja modela sa ekperimentalnim podacima. Za obe ispitane sirovine, među ispitanim modelima, izabrani su modeli koji najbolje opisuju njihovu ekstrakciju natkritičnim ugljendioksidom. Prošireni model klipnog toka koji je predložila Sovová pokazao se podjednako dobrim za modelovanje natkritične ekstrakcije obe sirovine i nešto bolji od ostalih primenjenih modela.</p> / <p>This study provides results of supercritical carbon dioxide (SCCO<sub>2</sub>) extraction of juniper berries (<em>Juniperus communis</em> L.) and pumpkin seeds (<em>Cucurbita pepo</em> L. convar. <em>citrullina</em>) in a laboratorysupercritical fluid extraction apparatus. The influence<br />of pressure, temperature, particle size and carbon dioxide flow on the extraction kinetics of pumpkin seed oil and juniper berry essential oil was studied. Ground pumpkin seeds were also extracted with supercritical carbon dioxide in NOVA-SWISS, High Pressure Extraction Plant, and with hexane and petroleum ether in a laboratory Soxhlet extractor. This work was also aimed to investigate the evolution of the composition of juniper fruit supercritical CO<sub>2</sub> extracts with time, at different extraction pressures and to emphasize the most favorable condition for the extraction of different terpene hydrocarbon groups, reporting the qualitative differences among extracts collected during successive extraction time periods. Juniper berry extracts were analyzed by capillary gas chromatography, using flame ionization (GC-FID) and mass spectrometric detection (GC-MS). More than 200 constituents were detected in the extracts and the contents of 50 compounds were reported in the work. Dependence of the percentage yields of monoterpene, sesquiterpene, oxygenated monoterpene and oxygenated sesquiterpene hydrocarbon groups on extraction time was investigated and conditions that favored the yielding of each terpene groups were emphasized. GC-MS analysis of FAME, prepared by transesterification of pumpkin seed oil with KOH in methanol, was performed. Fatty acid compositions of supercritical CO<sub>2</sub> pumpkin seed extract fractions collected in successive time intervals over the course of the extraction were determined. The same fractions were analyzed by high pressure liquid chromatography (HPLC), using diode-array detector (DAD) in order to determine a- and g-tocopherol contents. Sterol and squalene contents were determined by GC-MS analysis, as well. Conditions that favored the yielding of tocopherols, squalene and sterols were emphasized. A general mass transfer model and its simlifications were analysed. Extraction curves were evaluated by “hot sphere” mathematical models SSM-1 (Single Sphere Model 1 – in which the external mass transfer coefficient also influences the extraction profile and film mass transfer coefficients were estimated by the correlations), SSM-1 (2 par) (film mass transfer coefficient is used as the second adjustable parameter), SSM-2 (only effective diffusivity influence is considered), Characteristic time model and by the extended Lack’s plug-flow model given by Sovová. A combined model of Hong et al. was also fitted to the experimental data for pumpkin seed oil SCCO<sub>2 </sub>extractions. Relative merits of the models are demonstrated. Good agreement between the extended Lack’s plug-flow model and the experimental measurements was obtained.</p>
|
3 |
Karakteristike oleorizina mlevene začinske paprike dobijenog klasičnom i ekstrakcijom superkritičnim ugljen-dioksidom / Characteristics of ground pepper oleoresin, produced byclassic and supercritical fluid extraction with carbon-dioxideTepić Aleksandra 03 September 2009 (has links)
<p>Cilj istraživanja u ovom radu bilo je ispitivanje uticaja<br />različitih vidova ekstrakcije (konvencionalna ekstrakcija<br />organskim rastvaračem i superkritična ekstrakcija ugljendioksidom)<br />na kvalitet oleorizina začinske paprike u pogledu<br />kvalitativnog i kvantitativnog sadržaja bojenih materija,<br />sastava masnih kiselina i antioksidativnih svojstava. Pošto u<br />Vojvodini postoje značajni kapaciteti za proizvodnju i preradu<br />začinske paprike, smatramo da će rezultati ovih ispitivanja<br />dati uvid u kinetiku različitih tipova ekstrakcije i pružiti<br />informacije o uslovima potrebnim za dobijanje proizvoda<br />vrhunskog kvaliteta.</p> / <p>The aim of the work was to investigate the influence of<br />different extraction methods (conventional extraction using<br />organic solvent and supercritical carbon-dioxide extraction)<br />to qualitative and quantitative pigment content, fatty acid<br />content and antioxidant properties of oleoresins. As there<br />have been significant production and processing capacities of<br />spice pepper in Vojvodina, the results of these investigations<br />will give a closer insight into the kinetics of different types of<br />extraction and conditions for obtaining the high quality<br />product.</p>
|
Page generated in 0.1263 seconds