• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Tests of Fluid-to-Fluid Scaling Laws for Supercritical Heat Transfer

Mouslim, Abderrazzak 20 March 2019 (has links)
A comparison of available fluid-to-fluid scaling laws for scaling convective heat transfer at supercritical pressures showed that the ones suggested by Zahlan, Groeneveld and Tavoularis (ZGT) have some advantages. The applicability of the ZGT laws was tested for pairs of fluids including carbon dioxide, water or Refrigerant R134a. The conditions of previous measurements taken in the Supercritical University of Ottawa Loop with CO2 flowing vertically upwards in an electrically heated tube with 8 mm ID were scaled to equivalent conditions in R134a and new measurements of the heat transfer coefficient (HTC) were taken in the same tube using the latter fluid. The inlet pressure was 1.13 times the critical pressure (4.06 MPa), the mass flux was in the range from 212 kg/m^2 s to 1609 kg/m^2 s, the heat flux was in the range from 2 kW/m^2 to 137 kW/m^2, and the inlet temperature was in the range from 62 ℃ to 105 ℃. The HTC at equivalent conditions in water was also determined with the use of transcritical look-up tables. Average and linearly varying corrections to the ZGT scaling laws were derived by statistical analysis for each pair of fluids under NHT or DHT conditions. Such corrections reduced the standard deviation of the scaling error but did not eliminate the presence of large errors under many sets of conditions. As expected, scaling errors were in general larger for DHT than NHT conditions. The present results did not reveal any systematic and correctable dependence of the scaling error upon the mass flux or heat flux but showed that scaling errors became particularly large as the bulk temperature T_b approached the pseudocritical temperature T_pc. In conclusion, the ZGT scaling laws appear to be fairly accurate for the three pairs of fluids considered in the liquid-like region with T_b/T_pc ≤ 0.94 and possibly in the gas-like region with T_b/T_pc ≥ 1.02, whereas outside this range scaling errors could be significant. It was also found that the ZGT scaling laws do not scale accurately the onset of DHT in different fluids.
2

An Experimental Study of Heat Transfer Deterioration at Supercritical Pressures

Kline, Nathan January 2017 (has links)
Convective heat transfer to CO2 flowing upward in electrically heated vertical tubes at supercritical pressures was studied for wall heat fluxes q within ranges that included values corresponding to the onset of heat transfer deterioration (HTD). The inlet pressure was P = 8.35 MPa, the mass flux was in the range 200 kg/m2s ≤ G ≤ 1500 kg/m2s, and the inlet temperature was in the range 0 ◦C ≤ Tin ≤ 35 ◦C. Wall temperature measurements were collected in three tubular test sections, having inner diameters of D = 4.6, 8, and 22 mm. The abilities of three different HTD identification methods to separate the entire data set into deteriorated and normal heat transfer modes were tested. Two types of buoyancy parameters were tested as HTD detection methods, and correction factors for changes in mass flux were devised. The minimum heat flux at HTD onset was found to follow a power law of mass flux with the same exponent for all three sections and the same proportionality coefficient for the two smaller sections but a smaller one for the larger test section. For heat flux values that were larger than this minimum, HTD was found to occur only within a limited range of Tin, whose width increased with increasing heat flux. The heat transfer coefficient for normal heat transfer was expressed as an exponential function of the diameter.

Page generated in 0.0981 seconds