• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Tidally Generated Internal Waves from Dual-Ridge Topography

Sanderson, Ian Derik 01 November 2022 (has links)
Internal waves are generated in stratified fluids, like the ocean, where density increases with depth. Tides are one of the major generation mechanisms of internal waves. As the tides move water back and forth over underwater topography, internal waves can be generated. Topography slope and amplitude are major factors in the behavior of the generated internal wave field. In order to further understand the effects topographic shape plays, the effect of asymmetry on internal waves is investigated. This research investigates internal waves generated by dual-ridge topographies. Four cases of symmetric topographies, T, M, W, and W2, with three different peak spacings are compared to their singular ridge counter parts at three oscillation frequencies, ω = 0.6N, ω = 0.75N, and ω = 0.9N. Both subcritical and supercritical symmetric ridges were investigated. Experiments were also performed for subcritical, asymmetric dual ridges at the middle oscillation frequency. The internal wave fields were captured with synthetic schlieren and analyzed with the Hilbert transform and sum of kinetic energy in wavenumber space. It is found that for wave fields from substantially separated ridges, mixing and wave interference occurs that decreases total kinetic energy of the system.

Page generated in 0.0992 seconds