Spelling suggestions: "subject:"directive"" "subject:"nondirective""
1 |
Design of Robust Superdirective Receiving Antenna Array for Circular, Hexagonal and Elliptical GeometriesNelakonda, Nikitha 10 June 2016 (has links)
No description available.
|
2 |
High-Sensitivity Phased Arrays for Radio Astronomy and Satellite CommunicationsDiao, Junming 01 March 2017 (has links)
Radio astronomy is used to study stars, galaxies, black holes and gas clouds radiation at radio frequencies. Detecting extremely weak signals from deep space radio sources requires high sensitive feed system associated with large dish antennas. The key figure of merit is survey speed, or the time required to map a region of the sky to a given source flux density. Survey speed is proportional to the frequency bandwidth, the field of view or observable region of the sky, and the squared sensitivity, where sensitivity is related to reflector aperture efficiency and system noise temperature. Compared to the traditional single feed, phased array feeds with significantly expanded field of view are considered as the next generation feed for radio telescope. This dissertation outlines the design, analysis and measurement of high sensitivity L-band and mm-wave phased array feeds for the 100-meter Green Bank Telescope. Theoretical works for radio astronomy includes design guideline for high sensitivity phased array feed, fundamental frequency bandwidth limit, array antenna loss influenced by mutual coupling and beamformer coefficients and possibility of superdirectivity for radio telescopes and other antennas. These study are helpful to understand and guide the design of a phased array feed system. In the absence of dish antennas, sparse phased arrays with aperiodic structure have been developed for satellite communications. A compromise between the peak side lobe level, array element density, directivity and design complexity is studied. We have found that the array peak side lobe level can be reduced by enhancing the array element direction at the main lobe direction, increasing the array element density and enlarging the array size. A Poynting streamline approach develops to understand the properties of a receiving antenna and the mutual coupling effects between array elements. This method has been successfully used to generate effective area shape for many types of antennas and guide the design of a superdirective antenna. Motivated by this method, a superdirective antenna is experimental demonstrated.
|
3 |
Antennes miniatures, large bande et superdirectives à charges optimisées par l'analyse des modes caractéristiques / Wideband and superdirective small antennas with embedded optimized loads using the characteristic modes theoryJaafar, Hussein 18 August 2018 (has links)
L'évolution rapide dans les systèmes de communication sans fil nécessite plus de miniaturisation de divers composants électroniques en plus de l'élément majeur de la technologie sans fil : l'antenne. Dans ce cas, une antenne occupant un espace limité devrait être miniaturisée pour fonctionner aux bandes de communication souhaitées. Cependant, à mesure que la taille électrique de l'antenne diminue, ses performances se dégradent considérablement et sa bande passante, son efficacité et sa directivité sont limitées. Les techniques classiques de réduction de la taille avec chargement de matériau et mise en forme géométrique de l'antenne souffrent d'une bande passante étroite et d'une faible efficacité de rayonnement. D'autre part, les tentatives d'augmenter la directivité des petites antennes en utilisant des réseaux superdirectifs sont également associées à une faible efficacité de rayonnement bande passante très étroite. Pour pallier ces inconvénients, nous proposons de booster les performances des antennes compactes en utilisant des charges réactives embarquées. En plaçant correctement les charges (actives ou passives) à l'intérieur de l'antenne, il est possible de contrôler les courants pour améliorer de manière significative les performances de l'antenne en termes de bande passante et de directivité. Cependant, pour un succès des critères de chargement, il est obligatoire d'analyser les modes naturellement supportés par l'antenne étudiée. On les appelle les modes caractéristiques, qui fournissent des aperçus physiques profonds sur le comportement de l'antenne et ses modes de rayonnement. En combinant cette théorie avec l'algorithme d'optimisation, il devient possible de manipuler de manière optimale les courants à l'intérieur de l'antenne en utilisant des charges réactives pour obtenir des conceptions large bande, superdirectives et efficaces. / The rapid evolution in the wireless communication systems requires more miniaturization of various electronic components in addition to the major element of the wireless technology: the antenna. In this case, an antenna occupying a limited space should be miniaturized in order to operate at the desired communication bands. However, as the electrical size of the antenna decreases, its performance degrades dramatically and it becomes limited in bandwidth, efficiency, and directivity. Classical size reduction techniques with material loading and geometry shaping of the antenna suffer from narrow bandwidth and low radiation efficiency. On the other hand, attempts to increase the directivity of small antennas using superdirective arrays are also associated with low radiation efficiency and very narrow bandwidth. To overcome these drawbacks, we propose boosting the performance of compact antennas using embedded reactive loads. By properly placing loads (active or passive) inside the antenna, it is possible to control the currents to significantly enhance the antenna performance in terms of bandwidth and directivity. Yet, for a successful loading criteria, it is mandatory to analyze the modes that are naturally supported by the antenna under study. These are called the characteristic modes, which provide deep physical insights about the behaviour of the antenna and its radiating modes. By combining this theory with and optimization algorithm, it becomes possible to optimally manipulate the currents inside the antenna using reactive loads to achieve wideband, superdirective and efficient designs.
|
Page generated in 0.0463 seconds