• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

High-Speed GaN-Based Distributed-Feedback Lasers and Optoelectronics

Holguin Lerma, Jorge Alberto 09 1900 (has links)
Gallium nitride (GaN) is a semiconductor material highly regarded for visible light generation since it provides the most efficient platform for compact violet, blue, and green light emitters, and in turn, high-quality and ubiquitous white lighting. Despite this fact, the potential of the GaN platform has not been fully exploited. This potential must enable the precise control in the various properties of light, realizing functions beyond the conventional. Simultaneously, the field of the telecommunications is looking for candidate technologies fit for wireless transmission in the next generations of communication. Visible light communication (VLC) may play a significant role in the future of the last mile of the network by providing both a fast internet connection and a high-quality illumination. Hence, a variety of optoelectronic platforms, including distributed-feedback (DFB) lasers, superluminescent diodes (SLDs), and multi-section lasers, can be used to exploit the full potential of GaN while offering unprecedented solutions for VLC and other applications, such as atomic clocks, high-resolution fluorescence microscopy, and on-chip nonlinear processing at visible wavelengths. This dissertation demonstrates green and sky-blue DFB lasers based on GaN, with resolution-limited single-mode emission at wavelengths around 514 nm and 480 nm, side-mode suppression ratio as large as 42.4 dB, and application to up to 10.5 Gbit/s data transmission. Preliminary observations of DFB lasers with emission close to the Fraunhofer lines are presented, offering a pathway for low-background noise applications. Blue-emitting SLDs are used to demonstrate a 3.8 Gbit/s transmitter while achieving spectral efficiency of up 118.2 (mW・nm)/(kA/cm2) in continuous-wave operation. Visual quality is confirmed by coherence length and white light generation. Short-wavelength SLDs have the potential for higher resolution and fluorescence excitation in classical optical coherence tomography and fiber gyroscopes. The demonstration of a two-section green laser diode is presented, achieving coupled-cavity lasing at wavelengths of 514 nm based on an integrated green laser–absorber in self-colliding pulse configuration, operated in continuous-wave electrical injection. The integrated laser offer potential for mode- locked and Q-switched lasing. The integrated laser is suitable for reconfiguration where laser–modulator, laser–absorber, and laser–amplifier are proposed and investigated at green wavelengths.
2

Surface-Plasmon-Polariton-Waveguide Superluminescent Diode: Design, Modeling and Simulation

Ranjbaran, Mehdi 04 1900 (has links)
<p>Since the inception of integrated electronic circuits there has been a trend of miniaturizing as many electronic, optical and even mechanical circuits and systems as possible. For optical applications this naturally led to the invention of semiconductor optical sources such as the laser diode (LD) and the light emitting diode (LED). A third device, the superluminescent diode was later invented to offer an output with a power similar to that of an LD and spectral width similar to that of an LED. However, there is usually a trade off between the output power and spectral width of the generated beam. The main challenge in the development of SLD is, therefore, finding ways to mitigate the power-spectral linewidth trade off.</p> <p>Previous work has two major directions. In the first one the goal is to eliminate facet reflections thus preventing lasing from happening. The detrimental effect of lasing is that even before it starts the spectral width quickly narrows down. In the second research direction the goal is to make the material gain spectrum wider by playing with different parameters of quantum well active regions.</p> <p>This research work explores yet another way of broadening output spectrum of SLD while allowing the power to increase at the same time. The surface-plasmon waveguide (SPWG) has been proposed to replace the dielectric waveguide, for the first time. A novel SPWG structure is introduced and designed to optimize the device performance in terms of the output power, spectral width and their product known as the power-linewidth product. The effect of different parameters of the new structure on the output light is investigated and attention is given to the high power, high spectral width and high power-linewidth product regimes.</p> / Doctor of Philosophy (PhD)
3

Laser induced quantum well intermixing : reproducibility study and fabrication of superluminescent diodes / Interdiffusion de puits quantiques induite par laser : étude de la reproductibilité et fabrication de diodes superluminescentes

Béal, Romain January 2015 (has links)
Abstract : Photonic Integrated Circuits (PIC) are of tremendous interest for photonics system in order to reduce their power consumption, size, fabrication cost and improve their reliability of fiber optics linked discrete component architecture. However, unlike for microelectronics, in photonics different heterostructures are required depending on the type of device (laser sources, detectors, modulators, passive waveguides…). Therefore photonics integration needs a technology able to produce multiple bandgap energy wafers with a suitable final material quality in a reproducible manner and at a competitive cost: a technological challenge that has not been completely solved yet. Quantum Well Intermixing (QWI) is a post growth bandgap tuning process based on the localized and controlled modification of quantum well composition profile that aims to address these matters. UV laser induced QWI (UV-Laser-QWI) relies on high power excimer laser to introduce point defects near the heterostructure surface. By adjusting the laser beam shape, position, fluence and the number of pulse delivered, the different regions to be intermixed can be defined prior to a rapid thermal annealing step that will activate the point defects diffusion across the heterostructure and generate quantum well intermixing. UV-LaserQWI presents the consequent advantage of allowing the patterning of multiple bandgap regions without relying on photolithographic means, thus offering potentially larger versatility and time efficiency than other QWI processes. UV-Laser-QWI reproducibility was studied by processing samples from an InGaAs/InGaAsP/InP 5 quantum well heterostructure emitting at 1.55 µm. 217 different sites on 12 samples were processed with various laser doses. The quantum well intermixing generated was then characterized by room temperature photoluminescence (PL) mapping. Under those experimental conditions, UV-Laser-QWI was able to deliver heterostructures with a PL peak wavelength blue shift controlled within a +/- 15 % range up to 101.5nm. The annealing temperature proved to be the most critical parameter as the PL peak wavelength in the laser irradiated areas varied at the rate of 1.8 nm per degree Celsius. When processing a single wafer, thus limiting the annealing temperature variations, the bandgap tuned regions proved to be deliverable within ± 7.9%, hence establishing the potential of UV-Laser-QWI as a reproducible bandgap tuning solution. The UV-Laser-QWI was used to produce multiple bandgap wafers for the fabrication of broad spectrum superluminescent diodes (SLD). Multiple bandgap energy profiles were tested and their influence on the SLDs’ performances was measured. The most favorable bandgap modifications for the delivery of a very broadband emitting SLD were analyzed, as well as the ones to be considered for producing devices with a flat top shaped spectrum. The intermixed SLDs spectra reached full width at half maximum values of 100 nm for a relatively flattop spectrum which compare favorably with the ≈ 40nm of reference devices at equal power. The light-intensity characteristics of intermixed material made devices were very close to the ones of reference SLD made from as-grown material which let us think that the alteration of material quality by the intermixing process was extremely limited. These results demonstrated that the suitability of UV-Laser-QWI for concrete application to photonic devices fabrication. Finally, an alternative laser QWI technique was evaluated for SLD fabrication and compared to the UV laser based one. IR-RTA relies on the simultaneous use of two IR laser to anneal local region of a wafer: a 980 nm laser diode coupled to a pigtailed fiber for the wafer background heating and a 500 µm large beam TEM 00 Nd:YAG laser emitting at 1064 nm to anneal up to intermixing temperature a localized region of the wafer. The processed samples exhibited a 33 % spectral width increase of the spectrum compare to reference device at equal power of 1.5 mW. However, the PL intensity was decreased by up to 60 % in the intermixed regions and the experiments proved the difficulty to avoid these material degradations of material quality with IR-RTA. / Résumé : L’intégration de circuit photonique vise à réduire la consommation énergétique, la taille, le coût et les risques de panne des systèmes photoniques traditionnels faits de composants distincts connectés par fibre optique. Cependant, contrairement à la microélectronique, des hétérostructures spécifiques sont requises pour chaque composant : lasers, détecteurs, modulateurs, guides d’ondes… De cette constatation découle le besoin d’une technologie capable de produire des gaufres d’hétérostructures III/V de qualité à plusieurs énergies de gap, et ce de façon reproductible pour un coût compétitif. Aucune des techniques actuelles ne répond pour l’instant pleinement à tous ces impératifs. L’interdiffusion de puits quantique (IPQ) est un procédé post épitaxie basé sur la modification locale de la composition des puits quantiques. L’IPQ induite par laser UV (IPQ-UV) est basée sur l’utilisation de laser excimer (Argon-Fluor émettant à 193 nm ou Krypton-Fluor à 248 nm) pour introduire des défauts ponctuels à la surface de l’hétérostructure. En ajustant la taille du faisceau, sa position, son énergie ainsi que le nombre d’impulsions laser délivrées à la surface du matériau, on peut définir les régions à interdiffuser ainsi que leur futur degré d’interdiffusion. Un recuit de la gaufre active ensuite la diffusion des défauts et par conséquent l’interdiffusion du puits. L’IPQ-UV présente l’avantage considérable de se passer de photolithographie pour définir les zones de différentes énergies de gap, diminuant ainsi la durée et potentiellement le coût du procédé. La reproductibilité de l’IPQ-UV a été étudiée pour l’interdiffusion d’une structure à 5 puits quantiques d’InGaAs/InGaAsP/InP émettant à 1.55 µm. 217 régions sur 12 échantillons ont été irradiés par un laser KrF avec des nombres d’impulsion variables selon les sites et avec une densité d’énergie constante de 155 mJ/cm². Les modifications de la structure générée par ce traitement furent ensuite mesurées par cartographie en photoluminescence (PL) à température ambiante. L’analyse des données montra que l’IPQ-UV permet un contrôle du décalage vers le bleu du pic de PL à +/- 15 % jusqu’à 101.5nm. La température du recuit est apparue comme le paramètre crucial du procédé, puisque la longueur d’onde du pic de PL des zones interdiffusées varie de 1.8 nm par degré Celsius. En considérant les sites irradiés sur une seule gaufre, c’est à dire en s’affranchissant des variations de température entre deux recuits de notre système, la variation du pic de PL est contrôlable dans une plage de ± 7.9%. Ces résultats démontrent le potentiel de l’IPQ-UV en tant que procédé reproductible de production de gaufre à plusieurs énergies de gap. L’IPQ-UV a été utilisé pour la fabrication de diodes superluminescentes (DSLs). Différents type de structure à énergie de gap multiple ont été testés et leurs influences sur les performances spectrales des diodes évalués. Les spectres des DSLs faites de matériau interdiffusé ont atteint des largeurs à mi-hauteur dépassant les 100 nm (jusqu’à 132 nm), ce qui est une amélioration conséquente des ≈ 40nm des DSLs de référence à puissance égale. Les caractéristiques intensité–courant des DSLs interdiffusés furent mesurées comme étant très proches de celle des dispositifs de référence faits de matériau brut, ce qui suggère que l’IPQ-UV n’a pas ou très peu altéré la qualité du matériau initial. Ces résultats prouvent la capacité de l’IPQ-UV à être utilisé pour la fabrication de dispositifs photoniques. Une technique alternative d’IPQ par laser a été évaluée et comparée à l’IPQ-UV pour la fabrication de DSL. Le recuit rapide par laser IR est basé sur l’utilisation simultanée de deux lasers IR pour chauffer localement l’hétérostructure jusqu’à une température suffisante pour provoquer l’interdiffusion: une diode laser haute puissante émettant à 980 nanomètre couplée dans une fibre chauffe la face arrière de la gaufre sur une large surface à une température restant inférieure à celle requise pour provoquer l’interdiffusion et un laser Nd:YAG TEM 00 émettant à 1064 nm un faisceau de 500 µm de large provoque une élévation de température additionnelle localisée à la surface de l’échantillon, permettant ainsi l’interdiffusion de l’hétérostructure. Les dispositifs fabriqués ont montré une augmentation de 33 % de la largeur à mi-hauteur du spectre émis à puissance égale de 1.5 mW. Cependant, l’intensité du pic de PL dans les zones interdiffusées est diminuée de 60 %, suggérant une dégradation du matériau et la difficulté à produire un matériau de qualité satisfaisante.

Page generated in 0.1042 seconds