• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 179
  • 55
  • 31
  • 12
  • 11
  • 11
  • 11
  • 11
  • 11
  • 11
  • 6
  • 5
  • 3
  • 2
  • 1
  • Tagged with
  • 393
  • 118
  • 88
  • 69
  • 69
  • 63
  • 48
  • 45
  • 43
  • 39
  • 38
  • 36
  • 35
  • 35
  • 29
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

ADDITIVE DRAG OF TWO-DIMENSIONAL INLETS

Hall, Robert Baldwin, 1937- January 1977 (has links)
No description available.
72

Supersonic plasma tunnel with a mercury vapor medium

Uherka, Kenneth Leroy, 1937- January 1961 (has links)
No description available.
73

Ultragarsinių virpamų sistemų montavimo įrenginys / Hipersonic vibant skystem adiusting gear

Remeika, Donatas 16 June 2005 (has links)
Hipersonic vibant skystem adiusting gear mounted. we covered a wide range of subjects ultrasonic technological. Research to meet with success.
74

A study of the glow discharge supersonic jet interface

Smith, Robert Vanderhoof 12 1900 (has links)
No description available.
75

Rotational and Vibrational Raman Spectroscopy for Thermochemistry Measurements in Supersonic Flames

Bayeh, Alexander C 16 December 2013 (has links)
High speed chemically reacting flows are important in a variety of aerospace applications, namely ramjets, scramjets, afterburners, and rocket exhausts. To study flame extinction under similar high Mach number conditions, we need access to thermochemistry measurements in supersonic environments. In the current work a two-stage miniaturized combustor has been designed that can produce open supersonic methane-air flames amenable to laser diagnostics. The first stage is a vitiation burner, and was inspired by well-known principles of jet combustors. We explored the salient parameters of operation experimentally, and verified flame holding computationally using a well-stirred reactor model. The second stage of the burner generates an external supersonic flame, operating in premixed and partially premixed modes. The very high Mach numbers present in the supersonic flames should provide a useful test bed for the examination of flame suppression and extinction using laser diagnostics. We also present the development of new line imaging diagnostics for thermochemistry measurements in high speed flows. A novel combination of vibrational and rotational Raman scattering is used to measure major species densities (O_2, N_2, CH_4, H_2O,CO_2, CO, & H_2) and temperature. Temperature is determined by the rotational Raman technique by comparing measured rotational spectra to simulated spectra based on the measured chemical composition. Pressure is calculated from density and temperature measurements through the ideal gas law. The independent assessment of density and temperature allows for measurements in environments where the pressure is not known a priori. In the present study we applied the diagnostics to laboratory scale supersonic air and vitiation jets, and examine the feasibility of such measurements in reacting supersonic flames. Results of full thermochemistry were obtained for the air and vitiation jets that reveal the expected structure of an under-expanded jet. Centerline traces of density, temperature, and pressure of the air jet agree well with computations, while measurements of chemical composition for the vitiation flow also agree well with predicted equilibrium values. Finally, we apply the new diagnostics to the exhaust of the developed burner, and show the first ever results for density, temperature, and pressure, as well as chemical composition in a supersonic flame.
76

Liquid jet injection into a supersonic airstream.

Rebello, Peter Joseph Anthony. January 1972 (has links)
No description available.
77

An investigation of a method of aircraft control by shock wave interference

Aldridge, Edward Cleveland 12 1900 (has links)
No description available.
78

The static stability of bodies of revolution in supersonic flow : effect of forebody on afterbody.

Maidment, Peter Edward January 1972 (has links)
No description available.
79

Scramjet Experiments using Radical Farming

Odam, Judy Unknown Date (has links)
Scramjet engines are the focus of considerable interest for propulsion in the hypersonic flow regime. One of the serious technical challenges for developing scramjets is reducing the skin friction drag on the engine. The combustion chamber, in particular, is a major contributor to the skin friction drag because of the high density of the flow through that region. This investigation focuses on reducing the combustion chamber skin friction drag by minimising the surface area and size of the combustion chamber and by employing a novel approach to accomplishing combustion. The first design criterion is addressed by using a single internal-combustor scramjet configuration, as opposed to multiple external combustors, and by injecting the fuel on the intake to reduce the mixing length required in the combustor. The second design criterion refers to the use of a new technique called radical farming. This uses the highly two-dimensional nature of the flow through the engine, which is created by deliberately ingesting the leading edge shocks, to achieve combustion at lower mean static pressures and temperatures than generally expected. A simplified approximate theoretical analysis of the radical farming concept is presented. Experiments were conducted in the T4 free-piston shock tunnel on a scramjet model with a single rectangular constant cross-sectional area combustion chamber. Pressure measurements were taken along the centreline of the intake, combustion chamber and thrust surface and across the model width at three locations. Gaseous hydrogen fuel was injected halfway along the intake at a range of equivalence ratios between zero and one. The combustion chamber height was varied from 20mm to 32mm, which varied the contraction ratio of the engine from 4.1 to 2.9. The experiments were conducted at a stagnation enthalpy of either 3MJ/kg or 4MJ/kg. The nominal 3MJ/kg condition corresponds to Mach 7.9 flight at an altitude of 24km. The majority of the 4MJ/kg experiments were conducted at a nominal condition corresponding to Mach 9.1 flight at an altitude of 32km. A small number of 4MJ/kg experiments were conducted at simulated flight altitudes of between 30 and 38km; the flight Mach number for these experiments was approximately 9.0. Thrust was calculated by integrating the centreline pressure distribution over the area of the thrust surface, assuming that the pressure at any axial location was constant across the engine width. These experimental thrust values were compared with theoretical estimates obtained using a one-dimensional analysis and a quasi-two-dimensional analysis. The comparison provided an indication of the level of completion of combustion in the experiments. The difference in thrust produced as a result of combusting fuel was examined by plotting the incremental specific impulse against equivalence ratio. Experimental and theoretical results agreed best at the higher equivalence ratios. Turbulent boundary layer separation correlations were used to provide reasonable estimates for the equivalence ratio at which the flow choked. The drag on the internal flowpath of the scramjet engine was estimated using the quasi-two-dimensional analysis. This drag estimate was combined with the experimental thrust measurements to provide estimates of the net specific impulse. Positive net specific impulse estimates were obtained above a certain minimum equivalence ratio, which depended on the contraction ratio and the test condition. The engine performance was observed to be highly dependent on the two-dimensional shock structure within the engine. Thrust and specific impulse were observed to decrease with increasing simulated flight altitude, as expected. Positive net specific impulse estimates were obtained at equivalence ratios of approximately one for simulated flight altitudes below 35km. Assuming complete combustion and that an equivalence ratio of one can be reached, the configuration considered in the present study can theoretically reach a net specific impulse of approximately 1000s at the 3MJ/kg condition and 500s at the 4MJ/kg condition. These numbers provide a promising testimonial for the use of this configuration, with modifications, as a more efficient alternative to rocket engines.
80

Effect of struts on aeroacoustics of axisymmetric supersonic inlets /

Pande, Abhijit, January 1994 (has links)
Thesis (M.S.)--Virginia Polytechnic Institute and State University, 1994. / Vita. Abstract. Includes bibliographical references (leaves 84-86). Also available via the Internet.

Page generated in 0.0514 seconds