• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 41
  • 26
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 1
  • Tagged with
  • 94
  • 94
  • 87
  • 83
  • 43
  • 35
  • 31
  • 27
  • 27
  • 20
  • 19
  • 19
  • 17
  • 16
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The role of poly(ADP-ribose) polymerase-1 in the MDM2-p53 DNA damage response pathway

Jowsey, Paul Andrew January 2003 (has links)
p53 is a tumour suppressor protein that is stabilised and activated by DNA damage. DNA damage-induced p53 is able to bring about either cell cycle arrest or apoptosis by the induction of p53-responsive genes such as mdm2 and p21 waf-I. Mdm2 regulates p53 function by blocking the transcriptional transactivation domain of p53 and also by targeting p53 for degradation via an ubiquitin-mediated pathway. Increases in the levels and activity of p53 are brought about by post-translational modifications. The most widely studied modification of p53 is phosphorylation, mediated by several DNA damageactivated kinases. Poly(ADP-Ribose) Polymerase-l (PARP-l) is also a DNA damageactivated enzyme which covalently modifies several target proteins by poly(ADPribosylation). It is well established that PARP-1 plays a key role in DNA base excision repair. More recently, several studies have implicated PARP-1 in the regulation of p53 function in response to DNA damage, although the nature of this relationship has been controversial. This study aimed to clarify and investigate further the role of PARP-1 in p53 regulation using PARP-1 proficient and PARP-1 deficient mouse embryonic fibroblasts (MEFs) as well as a novel potent PARP-1 inhibitor (AGI4361; Ki < 6nM). In this study, both primary and immortalised PARP-l MEFs were used. Initial experiments revealed a tendency for PARP-l +/+ MEFs to develop p53 mutations during immortalisation. Interestingly. PARP-1 -/- MEFs retained wild-type p53, suggesting that the absence of PARP-l bypasses the requirement for p53 to be mutated during the immortalisation of MEFs. As these cells could not be used to analyse p53 responses, experiments were perfonned on primary PARP-l MEFs. However. the primary PARP-l- - MEFs were found to grow very slowly compared to their PARP-1 proficient counterparts. Interestingly. treatment of primary PARP-1+1+ MEFs with AG14361 had a similar effect on cellular growth. This growth inhibition in the absence of PARP-1 was only evident in primary and not immortalised cells. It was therefore decided to stably transfect immortalised PARP-l-- MEFs, expressing wild-type p53, with a plasmid construct containing PARP-l to produce an isogenic cell line pair. These cells have been used, together with a human colorectal carcinoma cell line (HCT-116) and the potent PARP-1 inhibitor AG14361 to analyse the p53 response to different DNA damaging agents. In response to ionising radiation and ultra violet radiation, the absence of PARP-1 did not alter the induction or activity of p53. In response to the alkylating agent temozolomide, treatment of PARP-l proficient MEFs with AG14361 potentiated the increase in p53 protein levels without affecting the transcriptional transactivation activity of p53, possibly due to an impaired repair of the DNA damage and hence increased signalling to p53 due to the persistence of DNA strand breaks. However, similar results were not obtained in the absence of PARP-1 protein (P ARP-1-/- MEFs) or in HCT -116 cells treated with AG 14361 The data presented do not support the hypothesis that PARP-1 is directly involved in the DNA damage induced regulation of p53. There may, however, be an altered p53 response in the absence of PARP-l when cells are treated with particular DNA damaging agents, due to an impaired DNA repair pathway.
2

The P53 pathway: role of telomerase and identification of novel targets : acts of a master regulator of tumor suppression /

Rahman-Roblick, Rubaiyat, January 2007 (has links)
Diss. (sammanfattning) Stockholm : Karolinska institutet, 2007. / Härtill 4 uppsatser.
3

Influence of genetic polymorphisms on DNA repair, p53 mutations and cancer risk /

Ryk, Charlotta, January 2006 (has links)
Diss. (sammanfattning) Stockholm : Karolinska institutet, 2006. / Härtill 5 uppsatser.
4

Molecular characterization of neural apoptosis

Walls, Ken C. January 2009 (has links) (PDF)
Thesis (Ph.D.)--University of Alabama at Birmingham, 2009. / Title from PDF title page (viewed on Sept. 9, 2009). Includes bibliographical references.
5

Interleukin-10 induces apoptosis in developing mast cells via a mitochondrial, STAT3-dependent pathway /

Bailey, Daniel Paul, January 2005 (has links)
Thesis (Ph.D.) -- Virginia Commonwealth University, 2005. / Prepared for: Dept. of Microbiology and Immunology. Bibliography: leaves [89]-118. Also available online.
6

A role for p63 in the regulation of cell cycle progression and cell death

Helton, Eric Scott. January 2007 (has links) (PDF)
Thesis (Ph. D.)--University of Alabama at Birmingham, 2007. / Title from first page of PDF file (viewed June 30, 2007). Includes bibliographical references (p. 70-72).
7

Characterization of a Suppressor of Mitogen-Activated Lymphocytes

Hodge, T. W., Inman, F. P. 01 January 1982 (has links)
Human palatine tonsil lymphocytes, when compared with peripheral blood lymphocytes (PBL), were in an activated state, even though there was no in vitro stimulation. When these tonsil lymphocytes were cultured in the absence of serum and polyclonal mitogens or antigens, the supernatant fluid often inhibited the proliferative response of target PBL to concanavalin A. The extent of this suppression ranged from 22% to 84%, and target cell viability was 90% or greater. There was no evidence for the presence of immunoglobulins or α2-macroglobulin in whole supernatant fluids. The suppressor was partially denatured at 80°C and was rendered completely inactive upon exposure to 100°C for 5 min. It was trypsin-sensitive, and had an apparent molecular weight of 100,000 or greater. The protein adhered strongly to DE-52, and the most active material was eluted with 0.4–0.6 M NaCl. Only one component was detected in this fraction by polyacrylamide gel electrophoresis. The suppressor had an isoelectric point of 5.0 ± 0.6.
8

Towards the Investigation of the Effects of Nitration on the Activity of the Human p53 Tumour Suppressor Protein. Nitration of the p53 Tumour Suppressor Protein

Husaini, Roslina January 2014 (has links)
Upon responding to cellular stress, p53 protein becomes stabilised and acts as a transcription factor mainly resulting from phosphorylation and acetylation of the protein. Nitration of p53 protein is poorly characterised by comparison with phosphorylation and acetylation. The main aim of this work was to study the effects of nitration on p53 functional activities and on p53-MDM2 protein-protein interactions. Preliminary work was to characterise the nitration of p53 protein over-expressed in E. coli BL21(DE3) which was then purified by a series of column chromatography. GST-MDM2 protein along with control GST protein were also overexpressed in BL21 which were subsequently purified by a single step batch purification before subjected to nitration. Peroxynitrite, a nitrating agent used in this study, was generated in vitro. Preliminary nitration work was carried out using BSA as a model protein as it is easily nitrated owing to its high number of tyrosine residues (19 residues). The present results showed that p53 and GST-MDM2 proteins were hardly nitrated as no strong nitro-tyrosine signals were obtained. This might be due to these proteins, being overexpressed in E. coli, were not properly folded resulting in hidden/cryptic tyrosine residues of which making nitration difficult to achieve. Peroxynitrite was shown to have a degrading property, reducing protein levels of peroxynitrite-treated p53, GST-MDM2 and GST proteins. Immunoprecipitation studies of cancer cell lysates with different p53 status treated with peroxynitrite showed very weak signals of nitro-p53 protein in mutant p53 cells whereby no nitro-p53 protein signal in wild-type p53 MCF7 cells. In addition, NO donor GSNO-treated MCF7 cells showed weak nitro-p53 protein signals. / Ministry of Science, Technology and Innovation (MOSTI) of Malaysia
9

Comparing mutant p53 and a wild-type p53 isoform, p47 : rationale for the selection of mutant p53 in tumours

Marini, Wanda. January 2009 (has links)
One of the major unresolved questions in cancer biology is why the majority of tumour cells express mutant p53 proteins. p53 is considered the prototype tumour suppressor protein, whose inactivation is the most frequent single genetic event in human cancer (Bourdon et al., 2005). Genetically-engineered p53-null knockout mice acquire multiple tumours very early on in life and human Li-Fraumeni families who carry germline mutations in p53 are highly cancer-prone (reviewed in Vousden and Lane, 2007). p53 mutant proteins have been found to acquire novel functions that promote cancer cell proliferation and survival, yet exactly why mutant p53s acquire oncogenic activity is still poorly understood. Mutant p53 has also been found to complex with wildtype p53, thus acting in a dominant negative way. However, this inhibition is incomplete since many cancers with mutant p53 alleles also have a loss of the second wild-type p53 allele and thus only express the mutant p53 (Baker et al., 1989). An N-terminal truncated p53 isoform, p47, arising from alternative splicing of the p53 gene (Ghosh et al., 2004) or by alternative initiation sites for translation (Yin et al. , 2002), has been described. Alternative splicing was found to be universal in all human multi-exon genes (Wang et al., 2008) and therefore determining the role of the p47 isoform with respect to the p53 gene is essential. Evidence in this study suggests that mutant p53 (p53RI75H) has a similar structure and function as p47, including the ability to complex with and impair both p53 and p73. Therefore, in addition to expressing a tumour suppressor protein, the p53 gene can also express an onco-protein (p47). This study therefore argues that tumours select for mutant p53 because it has gained the ability to function like p47, a wild-type p53 isoform.
10

Comparing mutant p53 and a wild-type p53 isoform, p47 : rationale for the selection of mutant p53 in tumours

Marini, Wanda. January 2009 (has links)
No description available.

Page generated in 0.0891 seconds