Spelling suggestions: "subject:"intramoléculaire""
191 |
Organogels et aérogels obtenus à partir de phénylalanine : étude de l'organisation supramoléculaire et élaboration d'un nouveau type de super-isolant thermique / Organogels and aerogels obtained from phenylalanine : Study of the supermolecular organization and elaboration of a new kind of super heat insulatorSon, Sébastien 23 January 2015 (has links)
Depuis 1973, l’un des objectifs principaux de la France est la diminution de la consommation des énergies de chauffage des bâtiments du résidentiel et du tertiaire qui représentent plus de 40% de la consommation énergétique totale du pays. Le développement des isolants thermiques a été par conséquent un sujet de recherche qui a abouti à de nouveaux matériaux : les super-isolants thermiques de conductivité thermique inférieure à 25 mW.m-1.K-1. Les aérogels organiques de faible densité de Z-Phe-NH-Napht étudiés au LCPM présentent une structure fibrillaire qui leur confère des propriétés thermiques intéressantes malgré une résistance mécanique faible. Une étude fondamentale de l’organisation supramoléculaire nous a permis d’une part de démontrer l’existence de deux modes d’empilement des molécules organogélatrices : tête-à-tête (monocristaux) et tête-à-queue (gels), caractérisées par une signature infrarouge propre à des pseudo-cycles respectivement en C12 et C10/C14. D’autre part, nous avons étudié le mécanisme de formation séquentiel de ces gels et abouti à un modèle complet d’organisation de la molécule isolée à la fibre basé sur une symétrie hexagonale. En vue d’une commercialisation d’un isolant à base d’aérogel organique, nous avons tout d’abord optimisé le protocole d’obtention des aérogels pour ensuite travailler à l’amélioration des propriétés thermiques et mécaniques. Nous sommes parvenus à un nouvel isolant hydrophobe présentant une conductivité thermique de l’ordre de celles des super-isolants et de bonnes propriétés mécaniques compatibles avec les pré-requis industriels pour une application dans le bâtiment / Since 1973, France's main objective in this domain has been to reduce the consumption of energy in heating residential and industrial buildings, which represents more than 40% of the national consumption. Consequently, the development of heat insulators has been the subject of research which has resulted in new materials: super thermal insulators with a thermal conductivity of less than 25 mW.m-1.K-1. Organic aerogels with a low density of Z-Phe-NH-Napht have been studied at LCPM for the past 10 years. Despite their very weak mechanical resistance they present a fibrillar structure which gives them very interesting thermal properties. A fundamental study of the supermolecular self-assembly allowed us to demonstrate the existence of two stacking methods of gelling molecules: head-to-head (monocrystals) and head-to-tail (gels) which are characterized by a specific infrared signature to the pseudo-cycles respectively on C12 and C10/C14. In addition, we also studied the sequential formation mechanism of these gels which resulted in a full model of their molecular organization from the single molecule to the fiber and based on a hexagonal packing symmetry. In aim of commercializing an insulator made from organic aerogels, we firstly optimized the protocol for obtaining aerogels to then work on improving their thermal and mechanical properties. We created a new hydrophobic insulator which has both a thermal conductivity in the range of the super heat insulators' and good mechanical properties that are compatible with industrial prerequisites for the construction of buildings
|
192 |
Contrôle de l'organisation moléculaire en 2D et 3D par l’utilisation de liaisons hydrogène, de coordination métallique et d'autres interactionsDuong, Adam 04 1900 (has links)
La stratégie de la tectonique moléculaire a montré durant ces dernières années son utilité dans la construction de nouveaux matériaux. Elle repose sur l’auto-assemblage spontané de molécule dite intelligente appelée tecton. Ces molécules possèdent l’habilité de se reconnaitre entre elles en utilisant diverses interactions intermoléculaires. L'assemblage résultant peut donner lieu à des matériaux moléculaires avec une organisation prévisible. Cette stratégie exige la création de nouveaux tectons, qui sont parfois difficiles à synthétiser et nécessitent dans la plupart des cas de nombreuses étapes de synthèse, ce qui empêche ou limite leur mise en application pratique. De plus, une fois formées, les liaisons unissant le corps central du tecton avec ces groupements de reconnaissance moléculaire ne peuvent plus être rompues, ce qui ne permet pas de remodeler le tecton par une procédure synthétique simple.
Afin de contourner ces obstacles, nous proposons d’utiliser une stratégie hybride qui se sert de la coordination métallique pour construire le corps central du tecton, combinée avec l'utilisation des interactions plus faibles pour contrôler l'association. Nous appelons une telle entité métallotecton du fait de la présence du métal. Pour explorer cette stratégie, nous avons construit une série de ligands ditopiques comportant soit une pyridine, une bipyridine ou une phénantroline pour favoriser la coordination métallique, substitués avec des groupements diaminotriazinyles (DAT) pour permettre aux complexes de s'associer par la formation de ponts hydrogène.
En plus de la possibilité de créer des métallotectons par coordination, ces ligands ditopiques ont un intérêt intrinsèque en chimie supramoléculaire en tant qu'entités pouvant s'associer en 3D et en 2D. En parallèle à notre étude de la chimie de coordination, nous avons
ii
examiné l'association des ligands, ainsi que celle des analogues, par la diffraction des rayons-X (XRD) et par la microscopie de balayage à effet tunnel (STM). L'adsorption de ces molécules sur la surface de graphite à l’interface liquide-solide donne lieu à la formation de différents réseaux 2D par un phénomène de nanopatterning. Pour comprendre les détails de l'adsorption moléculaire, nous avons systématiquement comparé l’organisation observée en 2D par STM avec celle favorisée dans les structures 3D déterminées par XRD. Nous avons également simulé l'adsorption par des calculs théoriques. Cette approche intégrée est indispensable pour bien caractériser l’organisation moléculaire en 2D et pour bien comprendre l'origine des préférences observées. Ces études des ligands eux-mêmes pourront donc servir de référence lorsque nous étudierons l'association des métallotectons dérivés des ligands par coordination.
Notre travail a démontré que la stratégie combinant la chimie de coordination et la reconnaissance moléculaire est une méthode de construction rapide et efficace pour créer des réseaux supramoléculaires. Nous avons vérifié que la stratégie de la tectonique moléculaire est également efficace pour diriger l'organisation en 3D et en 2D, qui montre souvent une homologie importante. Nous avons trouvé que nos ligands hétérocycliques ont une aptitude inattendue à s’adsorber fortement sur la surface de graphite, créant ainsi des réseaux organisés à l'échelle du nanomètre. L’ensemble de ces résultats promet d’offrir des applications dans plusieurs domaines, dont la catalyse hétérogène et la nanotechnologie.
Mots clés : tectonique moléculaire, interactions intermoléculaires, stratégie hybride, coordination métallique, diffraction des rayons-X, microscopie de balayage à effet tunnel, graphite, phénomène de nanopatterning, calculs théoriques, ponts hydrogène, chimie supramoléculaire, ligands hétérocycliques, groupements DAT, catalyse hétérogène, nanotechnologie. / In recent years, molecular tectonics has been a useful strategy in the construction of new materials. It relies on the spontaneous self-assembly of molecules called tectons. These molecules have the ability to recognize themselves using various intermolecular interactions. The resulting assembly can produce molecular materials with predictable organization. This strategy requires the creation of new tectons, which are sometimes difficult to synthesize and require in most cases many synthetic steps, which prevents or limits their practical application. Moreover, once formed, the bonds joining the central core of the tecton with the groups used for molecular recognition cannot be broken, which means that it is not possible to recycle or reform the tecton by simple synthetic procedures.
To avoid these obstacles, we propose to use a hybrid strategy that uses metal coordination to build the central core of the tecton, combined with the use of weaker interactions to control the association. We call such entities metallotectons due to the presence of metal. To explore this strategy, we constructed a series of ditopic ligands containing either pyridine, bipyridine or phenanthroline to promote metal coordination, substituted with diaminotriazinyl groups (DAT) to allow inter-complex association by the formation of hydrogen bonds.
In addition to the possibility of creating metallotectons by coordination, these ditopic ligands have an intrinsic interest in supramolecular chemistry as entities that can associate in 3D and 2D. In parallel to our study of coordination chemistry, we examined the association of ligands by X-ray diffraction (XRD) and scanning tunneling microscopy (STM). The adsorption of these molecules on the graphite surface at the liquid-solid interface results in the formation of different networks through a process of 2D nanopatterning. To understand the details of
iv
molecular adsorption, we systematically compared the 2D organization observed STM with the 3D structures determined by XRD. We also simulated the adsorption by theoretical calculations. This integrated approach is essential to characterize the molecular organization in 2D and to understand the origin of the observed preferences. These studies of the ligands themselves may therefore serve as a reference when we study the association of metallotectons derived by ligands coordination.
Our work demonstrates that the strategy combining coordination chemistry and molecular recognition is a rapid and an efficient method to create supramolecular networks. We verified that the strategy of molecular tectonics is also effective in leading the organization in 3D and 2D, which often shows a significant homology. We found that our heterocyclic ligands have unexpected ability to adsorb strongly on the graphite surface, creating networks organize in nanoscale. Together, these results provide promising applications in several fields, including heterogeneous catalysis and nanotechnology.
Keywords : molecular tectonics, intermolecular interactions, hybrid strategy, metal coordination, X-ray diffraction, scanning tunneling microscopy, graphite, nanopatterning phenomenon, theoretical calculations, hydrogen bonds, supramolecular chemistry, ligands, DAT groups, heterogeneous catalysis, nanotechnology.
|
193 |
Contrôle de l'organisation moléculaire en 2D et 3D par l’utilisation de liaisons hydrogène, de coordination métallique et d'autres interactionsDuong, Adam 04 1900 (has links)
La stratégie de la tectonique moléculaire a montré durant ces dernières années son utilité dans la construction de nouveaux matériaux. Elle repose sur l’auto-assemblage spontané de molécule dite intelligente appelée tecton. Ces molécules possèdent l’habilité de se reconnaitre entre elles en utilisant diverses interactions intermoléculaires. L'assemblage résultant peut donner lieu à des matériaux moléculaires avec une organisation prévisible. Cette stratégie exige la création de nouveaux tectons, qui sont parfois difficiles à synthétiser et nécessitent dans la plupart des cas de nombreuses étapes de synthèse, ce qui empêche ou limite leur mise en application pratique. De plus, une fois formées, les liaisons unissant le corps central du tecton avec ces groupements de reconnaissance moléculaire ne peuvent plus être rompues, ce qui ne permet pas de remodeler le tecton par une procédure synthétique simple.
Afin de contourner ces obstacles, nous proposons d’utiliser une stratégie hybride qui se sert de la coordination métallique pour construire le corps central du tecton, combinée avec l'utilisation des interactions plus faibles pour contrôler l'association. Nous appelons une telle entité métallotecton du fait de la présence du métal. Pour explorer cette stratégie, nous avons construit une série de ligands ditopiques comportant soit une pyridine, une bipyridine ou une phénantroline pour favoriser la coordination métallique, substitués avec des groupements diaminotriazinyles (DAT) pour permettre aux complexes de s'associer par la formation de ponts hydrogène.
En plus de la possibilité de créer des métallotectons par coordination, ces ligands ditopiques ont un intérêt intrinsèque en chimie supramoléculaire en tant qu'entités pouvant s'associer en 3D et en 2D. En parallèle à notre étude de la chimie de coordination, nous avons
ii
examiné l'association des ligands, ainsi que celle des analogues, par la diffraction des rayons-X (XRD) et par la microscopie de balayage à effet tunnel (STM). L'adsorption de ces molécules sur la surface de graphite à l’interface liquide-solide donne lieu à la formation de différents réseaux 2D par un phénomène de nanopatterning. Pour comprendre les détails de l'adsorption moléculaire, nous avons systématiquement comparé l’organisation observée en 2D par STM avec celle favorisée dans les structures 3D déterminées par XRD. Nous avons également simulé l'adsorption par des calculs théoriques. Cette approche intégrée est indispensable pour bien caractériser l’organisation moléculaire en 2D et pour bien comprendre l'origine des préférences observées. Ces études des ligands eux-mêmes pourront donc servir de référence lorsque nous étudierons l'association des métallotectons dérivés des ligands par coordination.
Notre travail a démontré que la stratégie combinant la chimie de coordination et la reconnaissance moléculaire est une méthode de construction rapide et efficace pour créer des réseaux supramoléculaires. Nous avons vérifié que la stratégie de la tectonique moléculaire est également efficace pour diriger l'organisation en 3D et en 2D, qui montre souvent une homologie importante. Nous avons trouvé que nos ligands hétérocycliques ont une aptitude inattendue à s’adsorber fortement sur la surface de graphite, créant ainsi des réseaux organisés à l'échelle du nanomètre. L’ensemble de ces résultats promet d’offrir des applications dans plusieurs domaines, dont la catalyse hétérogène et la nanotechnologie.
Mots clés : tectonique moléculaire, interactions intermoléculaires, stratégie hybride, coordination métallique, diffraction des rayons-X, microscopie de balayage à effet tunnel, graphite, phénomène de nanopatterning, calculs théoriques, ponts hydrogène, chimie supramoléculaire, ligands hétérocycliques, groupements DAT, catalyse hétérogène, nanotechnologie. / In recent years, molecular tectonics has been a useful strategy in the construction of new materials. It relies on the spontaneous self-assembly of molecules called tectons. These molecules have the ability to recognize themselves using various intermolecular interactions. The resulting assembly can produce molecular materials with predictable organization. This strategy requires the creation of new tectons, which are sometimes difficult to synthesize and require in most cases many synthetic steps, which prevents or limits their practical application. Moreover, once formed, the bonds joining the central core of the tecton with the groups used for molecular recognition cannot be broken, which means that it is not possible to recycle or reform the tecton by simple synthetic procedures.
To avoid these obstacles, we propose to use a hybrid strategy that uses metal coordination to build the central core of the tecton, combined with the use of weaker interactions to control the association. We call such entities metallotectons due to the presence of metal. To explore this strategy, we constructed a series of ditopic ligands containing either pyridine, bipyridine or phenanthroline to promote metal coordination, substituted with diaminotriazinyl groups (DAT) to allow inter-complex association by the formation of hydrogen bonds.
In addition to the possibility of creating metallotectons by coordination, these ditopic ligands have an intrinsic interest in supramolecular chemistry as entities that can associate in 3D and 2D. In parallel to our study of coordination chemistry, we examined the association of ligands by X-ray diffraction (XRD) and scanning tunneling microscopy (STM). The adsorption of these molecules on the graphite surface at the liquid-solid interface results in the formation of different networks through a process of 2D nanopatterning. To understand the details of
iv
molecular adsorption, we systematically compared the 2D organization observed STM with the 3D structures determined by XRD. We also simulated the adsorption by theoretical calculations. This integrated approach is essential to characterize the molecular organization in 2D and to understand the origin of the observed preferences. These studies of the ligands themselves may therefore serve as a reference when we study the association of metallotectons derived by ligands coordination.
Our work demonstrates that the strategy combining coordination chemistry and molecular recognition is a rapid and an efficient method to create supramolecular networks. We verified that the strategy of molecular tectonics is also effective in leading the organization in 3D and 2D, which often shows a significant homology. We found that our heterocyclic ligands have unexpected ability to adsorb strongly on the graphite surface, creating networks organize in nanoscale. Together, these results provide promising applications in several fields, including heterogeneous catalysis and nanotechnology.
Keywords : molecular tectonics, intermolecular interactions, hybrid strategy, metal coordination, X-ray diffraction, scanning tunneling microscopy, graphite, nanopatterning phenomenon, theoretical calculations, hydrogen bonds, supramolecular chemistry, ligands, DAT groups, heterogeneous catalysis, nanotechnology.
|
Page generated in 0.0412 seconds