1 |
Complexities and dynamics of the enantioselective site in heterogeneous catalysis : tartaric acid and methylacetoacetate on Cu(110)Lorenzo, Maria Ortega January 1999 (has links)
No description available.
|
2 |
Photoelectron spectroscopic studies of reactions at nickel surfacesGrubb, S. R. January 1984 (has links)
No description available.
|
3 |
Surface chemical aspects of zirconium based materials used in nuclear environmentsPowell, P. January 1984 (has links)
No description available.
|
4 |
The surface structures of uranium dioxide studied by elevated temperature STMMuggelberg, Christiane January 1997 (has links)
No description available.
|
5 |
Foundational Work in Bioelectrochemical Anaerobic Reactor Design with Electron MediatorsHoeger, Christopher D. 22 March 2013 (has links) (PDF)
Bioelectrical reactors (BER) have potential to be utilized in a wide variety of industrial applications. This work explores the kinetics involved with reduction of electron mediators (anthraquinone disulfonate and methyl viologen) in bioelectrical reactors. It also discusses on possible application of BER technology to produce ethanol from CO2 and electricity. It is established that Clostridium ragdahlei is capable of sustaining life and product formation with CO2 as the only carbon source. This means it is theoretically possible to utilize CO2 as he source of carbon and electricity as the source of reducing equivalents for bacterial growth and product formation. A three-step mechanism composed of adsorption, surface reaction, and desorption is developed to model the reaction of dissolved electron mediators at the electrode surface of the BER. The proposed mechanism is then utilized to build a mathematical model to describe the kinetics of the BER system. This model is used to gain greater understanding of experimental kinetic data of electron mediator reduction at different voltage potentials. It is determined that voltage potential has very small effect on the initial rate of reaction in the reactor. However, thermodynamic equilibrium is affected by the change in voltage, resulting in longer sustained initial rate at higher overpotential. Mathematically, this change affects the modeled rate constants by increasing the reverse rate constant of the rate limiting step, and also by affecting the ratio of the thermodynamic equilibrium constants of adsorption. This results in a larger amount of oxidized electron mediator adsorbed to the electrode surface at higher overpotentials, leading to the initial rate persisting further into experimental runs. One key portion of these findings was the determination that the surface reaction step is the rate limiting step of the kinetic mechanism. This has great ramifications on future research and on future considerations for reactor design. This insight allows for better understanding of the key and fundamental workings of BER technology.
|
6 |
Indoor secondary organic aerosol formation : influence of particle controls, mixtures, and surfacesWaring, Michael Shannon 22 October 2009 (has links)
Ozone (O₃) and terpenoids react to produce secondary organic aerosol (SOA). This work explored novel ways that these reactions form SOA indoors, with five
investigations, in two categories: investigations of (i) the impacts of particle controls on
indoor SOA formation, and (ii) two fundamental aspects of indoor SOA formation.
For category (i), two investigations examined the particle control devices of ion
generators, which are air purifiers that are ineffective at removing particles and emit
ozone during operation. With a terpenoid source present (an air freshener), ion
generators acted as steady-state SOA generators, both in a 15 m³ chamber and 27 m³
room. The final investigation in category (i) modeled how heating, ventilating, and air-conditioning
(HVAC) systems influence SOA formation. Influential HVAC parameters
were flow rates, particle filtration, and indoor temperature for residential and commercial
models, as well as ozone removal by particle-laden filters for the commercial model.
For category (ii), the first investigation measured SOA formation from ozone
reactions with single terpenoids and terpenoid mixtures in a 90 L Teflon-film chamber, at
low and high ozone concentrations. For low ozone, experiments with only d-limonene
yielded the largest SOA number formation, relative to other mixtures, some of which had
three times the effective amount of reactive terpenoids. This trend was not observed for high ozone experiments, and these results imply that ozone-limited reactions with d-limonene
form byproducts with high nucleation potential. The second investigation in category (ii) explored SOA formation from ozone
reactions with surface-adsorbed terpenoids. A model framework was developed to
describe SOA formation due to ozone/terpenoid surface reactions, and experiments in a
283 L chamber determined the SOA yield for ozone/d-limonene surface reactions. The
observed molar yields were 0.14–0.16 over a range of relative humidities, and lower relative humidity led to higher SOA number formation from surface reactions. Building materials on which ozone/d-limonene surface reactions are predicted to lead to
substantial SOA formation are those with initially low surface reactivity, such as glass,
sealed materials, or metals. The results from category (ii) suggest significant, previously unexplored mechanisms of SOA number formation indoors. / text
|
7 |
A COMBINED GAS-PHASE AND SURFACE REACTION MECHANISTIC MODEL OF DIESEL SURROGATE REFORMING FOR SOFC APPLICATIONPARMAR, RAJESH 24 April 2013 (has links)
This study presents a detailed gas-phase and surface kinetic model for n-tetradecane autothermal reforming to deconvolute the complex reaction network that provides the mechanistic understanding of reforming chemistry in a packed-bed reactor.
A thermodynamic analysis study for diesel reforming was performed to map the carbon formation boundary for various reforming processes. Through a Langmuir-Hinshelwood-Hougen-Watson (LHHW) type of kinetic model, which was derived using a simple mechanistic study, the need for a detailed kinetic study including both gas-phase reactions and surface reactions was identified.
Pt-CGO (Pt on Gd doped CeO2) and Rh-pyrochlore catalysts were synthesized and characterized. In an accelerated test for reforming of commercial-diesel, Rh-pyrochlore catalyst showed stable performance for 24 hrs, whereas Pt-CGO catalyst deteriorated in 4 hrs. Minimum structural change in Rh-pyrochlore catalyst compared to Pt-CGO catalyst was observed using redox experiments. An experimental kinetic study with an inert silica bed provided clear evidence that the gas-phase reactions are important to the kinetics of hydrocarbon reforming.
“Reaction Mechanism Generator” (RMG) software was employed to generate a detailed gas-phase kinetic model containing nine thousand three hundred and forty-seven elementary reactions and four hundred and fifty-nine species. The model was validated against n-tetradecane ignition delay data, and inert bed autothermal reforming data. The RMG model was also extended to capture the high pressure and low temperature pyrolysis chemistry to predict pyrolysis experimental data. The reactor simulation using the RMG model identified the detailed chemistry of the reactions in the pre-catalytic zone. Gas-phase oxidation/pyrolysis converts the heavier hydrocarbons and oxygen in the pre-catalytic zone to lower molecular weight products prior to reaching the catalyst surface. The steam reforming reactions that are dominant on the surface of the catalyst primarily involve lower molecular weight oxidation/pyrolysis products.
A multi-component micro-kinetic model containing two hundred and seventy surface reactions and fifty-two adspecies was developed using a semi-empirical Unity Bond Index-Quadratic Exponential Potential (UBI-QEP) method. Transition State Theory estimates were used for elementary reactions up to C3 species, and simple fragmentation reactions were assumed for higher hydrocarbon species. Model simulations indicated on the catalyst surface that hydrogen is initially produced by the water-gas-shift reaction and subsequently by steam reforming reactions. A major reaction path for ethylene formation from 1,3 butadiene in the post-catalytic zone of the reactor was also identified. / Thesis (Ph.D, Chemical Engineering) -- Queen's University, 2013-04-24 13:23:31.163
|
8 |
Prozessintegrierter Transfer von Nanopartikeln auf Polycarbonatoberflächen beim SpritzgießenKroschwald, Felix 01 December 2015 (has links)
Im Rahmen dieser Arbeit werden die Nanopartikel mittels verschiedener Beschichtungsverfahren auf eine Zwischenoberfläche (Substrat) appliziert. Diese wird anschließend in die Kavität einer Spritzgießmaschine eingelegt, wobei es während des Spritzgießprozesses zur Übertragung der Nanopartikel auf das PC-Formteil kommt. Als Modellsystem werden dafür Goldnanopartikel (AuNP) verwendet, da diese charakteristische optische, chemische und physikalische Eigenschaften aufweisen. Im weiteren Verlauf wurde die Übertragung von Kohlenstoffnanoröhren (CNT) und Siliziumdioxidnanopartikeln (SiO2-NP) untersucht. Die Oberflächen der SiO2-NP wurden außerdem mithilfe funktioneller Alkoxysilane modifiziert, um den Einfluss der Nanopartikeloberfläche auf die Übertragung zu untersuchen.
|
9 |
Theoretical description of water splitting on TiO2 and combined Mo2C-graphene based materialsRodríguez Hernández, Fermín 22 August 2017 (has links) (PDF)
The electrocatalytic water decomposition has been investigated in this thesis by means of its two half standard reactions: the oxygen evolution reaction (OER) and the hydrogen evolution reaction (HER). These reactions occur in different locations in a typical electrochemical cell: the anode and the cathode, respectively. Motivated by the lack of understanding about the reaction mechanisms occurring at the anodes and cathodes, we have proposed first: novel representations of typical TiO2 surfaces, based on small cluster systems, which can be used for a quick and more detailed assessment of the OER activities at modified TiO2 surfaces, and secondly we investigated the HER in two sets of model surfaces which represent recently synthesized materials, based on Mo2C and graphene with promising activities toward the HER. We have employed Density Functional Theory (DFT) based methods within both localized and extended basis sets, as implemented in GAMESS and VASP packages, respectively, to examine the structural, electronic and vibrational properties of the proposed models.
We propose new reaction mechanisms for the OER on a number of molecular representations of TiO2 electrodes. For each reaction pathway, the free energy profile is computed, at different biases, from the DFT energies, the entropic and the zero-point energy contributions. The mechanisms explored in this thesis are found to be energetically more feasible than alternative reaction pathways considered in previous theoretical works based on molecular representations of the TiO2 surfaces. The representation of the surface of specific, commonly occurring, titanium dioxide crystals (e.g., rutile and anatase) within the small cluster approximation is able to reproduce qualitatively the rutile (110) outperforming of the anatase (001) surface.
We subsequently investigate the influence of doping TiO2 surfaces with transition metals (TMs) on the performance of TiO2 -based electrodes for the water splitting electrochemical reaction. Two cluster models of the TM-doped active sites which resemble both the TiO2 anatase (001) and rutile (110) surfaces, respectively, are considered for the evaluation of the water decomposition reaction when a Ti is replaced by a TM atom. A set of TMs spanning from Vanadium to Nickel is considered. The late TMs explored here: Fe, Co and Ni are found to reproduce the observed experimental trends for the overpotentials in TiO2-doped electrodes. In the case of Cr and Mn, the present study predicts an enhancement of the OER activity for the anatase-like clusters while a reduction of this activity is found for the rutile-like ones. The vanadium-doped structures do not show relevant influence in the OER activity compared to pure TiO2-based cluster models.
The last part of this work is devoted to the theoretical study of the HER on recently found materials based on the synergistic combination of molybdenum carbide and graphene layers. We propose two major structural models to describe the HER mechanism within the framework of DFT: Mo2C-based clusters adsorbed on carbon nanosheets and the Mo2C (001) surface covered by pure and nitrogen-doped graphene layers. The former system evaluates the influence of Mo2C nanoparticles adsorbed on carbon nanosheets towards the HER. The second one is employed to gain insight about the high HER activity observed in molybdenum carbide anchored on nitrogen-doped porous carbon nanosheets (Mo2C@2D-NPC), recently synthesized. The H-adsorption free energy has been used as a principal descriptor to asses the HER activity at the proposed model active sites. It resembles the value for the best state of the art catalyst for the HER (i.e., platinum at carbon substrate Pt@C) in some of the proposed structural models. Furthermore, a pH-correction is added within a simplified model, to the H-adsorption free energy barrier in every proposed structure. The pH dependence of the H-adsorption free energy barriers allows the assessment of the HER at acidic and alkaline conditions simultaneously. An overall agreement with experimental results is found and further predictions, promoting the development of better HER catalysts, have been done.
|
10 |
Metal Oxide Reactions in Complex Environments: High Electric Fields and Pressures above Ultrahigh VacuumQin, Feili 08 1900 (has links)
Metal oxide reactions at metal oxide surfaces or at metal-metal oxide interfaces are of exceptional significance in areas such as catalysis, micro- and nanoelectronics, chemical sensors, and catalysis. Such reactions are frequently complicated by the presence of high electric fields and/or H2O-containing environments. The focus of this research was to understand (1) the iron oxide growth mechanism on Fe(111) at 300 K and 500 K together with the effect of high electric fields on these iron oxide films, and (2) the growth of alumina films on two faces of Ni3Al single crystal and the interaction of the resulting films with water vapor under non-UHV conditions. These studies were conducted with AES, LEED, and STM. XPS was also employed in the second study. Oxidation of Fe(111) at 300 K resulted in the formation of Fe2O3 and Fe3O4. The substrate is uniformly covered with an oxide film with relatively small oxide islands, i.e. 5-15 nm in width. At 500 K, Fe3O4 is the predominant oxide phase formed, and the growth of oxide is not uniform, but occurs as large islands (100 - 300 nm in width) interspersed with patches of uncovered substrate. Under the stress of STM induced high electric fields, dielectric breakdown of the iron oxide films formed at 300 K occurs at a critical bias voltage of 3.8 ± 0.5 V at varying field strengths. No reproducible result was obtained from the high field stress studies of the iron oxide formed at 500 K. Ni3Al(110) and Ni3Al(111) were oxidized at 900 K and 300 K, respectively. Annealing at 1100 K was required to order the alumina films in both cases. The results demonstrate that the structure of the 7 Å alumina films on Ni3Al(110) is k-like, which is in good agreement with the DFT calculations. Al2O3/Ni3Al(111) (γ'-phase) and Al2O3/Ni3Al(110) (κ-phase) films undergo drastic reorganization and reconstruction, and the eventual loss of all long-range order upon exposure to H2O pressure > 10-5 Torr. Al2O3/Ni3Al(110) film is significantly more sensitive to H2O vapor than the Al2O3/Ni3Al(111) film, and this may be due to the incommensurate nature of the oxide/Ni3Al(110) interface. STM measurements indicate that this effect is pressure- rather than exposure- dependent, and that the oxide instability is initiated at the oxide surface, rather than at the oxide/metal interface. The effect is not associated with formation of a surface hydroxide, yet is specific to H2O (similar O2 exposures have no effect).
|
Page generated in 0.1056 seconds