• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Classificação das superfícies de revolução tipo Delaunay completas / classification of surfaces of revolution type complete Delaunay

SOUZA, Luiz Gustavo Alves de 30 May 2008 (has links)
Made available in DSpace on 2014-07-29T16:02:22Z (GMT). No. of bitstreams: 1 Dissertacao Luiz Souza.pdf: 3328860 bytes, checksum: 1983c2d013f54a9ebce4575a9b45bf38 (MD5) Previous issue date: 2008-05-30 / In this dissertation we have studied the articles The Surfaces of Delaunay, by James Eells, and Classi¯cation des Surfaces de Type Delaunay, by Ricardo Sa Earp and Eric Toubiana. Based on the ¯rst work we have classi¯ed the surfaces of revolution of constant mean curvature known as surfaces of Delaunay. By using the second one we have looked at special surfaces of Weingarten, whose mean and gaussian curvatures satis¯es the relation H = f(H2 ¡ K); where f is an elliptic function of class C1. We have classi¯ed the complete surfaces of revolution, that satis¯es the Weingarten relation. They are known as surfaces of Delaunay Type / Nesta dissertação ao estudamos os artigos The Surfaces of Delaunay, de Eells, James, e Classification des Surfaces de Type Delaunay, de Ricardo Sa Earp e Eric Toubiana Baseado no primeiro trabalho classificamos as superfícies de rotaação de curvatura média constante conhecidas como superfícies de Delaunay. Utilizando o segundo trabalho apre- sentamos um estudo sobre superfícies especiais de Weingarten, cuja curvatura média e Gaussiana satisfazem a relação H = f(H2¡K); onde f uma função elíptica de classe C1. Classificamos as superfícies de rotação completas, satisfazendo uma relação de Weingarten Elas são conhecidas como superfícies Tipo Delaunay

Page generated in 0.1397 seconds