• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Surge Modeling and Control of Automotive Turbochargers

Leufvén, Oskar, Bergström, Johan January 2007 (has links)
<p>Mean Value Engine Modeling (MVEM) is used to make engine control development less expensive. With more and more cars equipped with turbocharged engines good turbo MVEM models are needed. A turbocharger consists of two major parts: turbine and compressor. Whereas the turbine is relatively durable, there exist phenomenons on the compressor that can destroy the turbocharger. One of these is surge.</p><p>Several compressor models are developed in this thesis. Methods to determine the compressor model parameters are proposed and discussed both for the stable operating range as well as for the surge region of a compressor map. For the stationary region methods to automatically parameterize the compressor model are developed. For the unstable surge region methods to get good agreement for desired surge properties are discussed. The parameter sensitivity of the different surge properties is also discussed. A validation of the compressor model shows that it gives good agreement to data, both for the stationary region as well as the surge region.</p><p>Different open loop and closed loop controllers as well as different performance variables are developed and discussed. A benchmark is developed, based on a measured vehicle acceleration, and the control approaches are compared using this benchmark. The best controller is found to be a open loop controller based on throttle and surge valve mass flow.</p>
2

Surge Modeling and Control of Automotive Turbochargers

Leufvén, Oskar, Bergström, Johan January 2007 (has links)
Mean Value Engine Modeling (MVEM) is used to make engine control development less expensive. With more and more cars equipped with turbocharged engines good turbo MVEM models are needed. A turbocharger consists of two major parts: turbine and compressor. Whereas the turbine is relatively durable, there exist phenomenons on the compressor that can destroy the turbocharger. One of these is surge. Several compressor models are developed in this thesis. Methods to determine the compressor model parameters are proposed and discussed both for the stable operating range as well as for the surge region of a compressor map. For the stationary region methods to automatically parameterize the compressor model are developed. For the unstable surge region methods to get good agreement for desired surge properties are discussed. The parameter sensitivity of the different surge properties is also discussed. A validation of the compressor model shows that it gives good agreement to data, both for the stationary region as well as the surge region. Different open loop and closed loop controllers as well as different performance variables are developed and discussed. A benchmark is developed, based on a measured vehicle acceleration, and the control approaches are compared using this benchmark. The best controller is found to be a open loop controller based on throttle and surge valve mass flow.

Page generated in 0.0703 seconds