• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Numerical Simulation of the outlet effect for the MOCVD process.

Lee, Hong-Jan 02 July 2002 (has links)
Abstract A method using CFD-based computer simulations as a virtual reactor was proposed for cost-effective CVD reactor design. The virtual reactor was developed by combining the chemical reactor mechanism and rate constants obtained from kinetic studies using a small-scale, with the momentum, mass and heat transport processes simulated using a CFD code. The effect of the flow structure on the film thickness uniformity is demonstrated for the growth of GaAs from a Ga(CH3)3 -AsH3- H2 mixture. We present a modeling study of the growth of gallium arsenide layers deposited onto a high-temperature susceptor in a cylindrical metalorganic chemical vapor deposition reactor. We analyzed the deposition process with a two-dimensional model that is axisymmetric about the vertical axis. We attempted to control the extent of the consecutive reaction by modifying the flow pattern. For the output of side walls, because the gas velocity increase near the wafer edge, the residence time was lower in the central part of the wafer than near the edge. Therefore, it can be controlled by locating the outlet such that residence time above the entire wafer is uniform. And the study finds that decreasing the hole size lowered the film uniformity. This occurred because relative to the velocity at the center of the wafer, the velocity near the wafer edge increased with decreasing hole size. This result confirms that the control of the boundary layer thickness is very important for the film thickness uniformity. We also find that decreasing the shower-to-wafer distance increased velocity near the wafer and therefore increased the growth rate. The present study indicates that we can design a MOCVD reactor and optimize the operating conditions efficiently using a computer simulation with other¡¦s experiments.
2

Polymer bonding by induction heating for microfluidic applications

Knauf, Benedikt J. January 2010 (has links)
Microfluidic systems are being used in more and more areas and the demand for such systems is growing every day. To meet such high volume market needs, a cheap and rapid method for sealing these microfluidic platforms which is viable for mass manufacture is highly desirable. In this work low frequency induction heating (LFIH) is introduced as the potential basis of a cost-effective, rapid production method for polymer microfluidic device sealing. Thin metal layers or structured metal features are introduced between the device s substrates and heated inductively. The surrounding material melts and forms a bond when cooling. During the bonding process it is important to effectively manage the heat dissipation to prevent distortion of the microfluidic platform. The size of the heat affected zone (HAZ), and the area melted, must be controlled to avoid blockage of the microfluidic channels or altering the channels wall characteristics. The effects of susceptor shape and area, bonding pressure, heating time, etc, on the heating rate have been investigated to provide a basis for process optimisation and design rules. It was found that the maximum temperature is proportional to the square of the susceptor area and that round shaped susceptors heat most efficiently. As a result of the investigations higher bonding pressure was identified as increasing bond strength and allowing the reduction of heating time and thus the reduction of melt zone width. The use of heating pulses instead of continuous heating also reduced the dimensions of melt zones while maintaining good bond strength. The size of the HAZ was found to be negligible. An analytical model, which can be used to predict the heating rate, was derived. In validating the model by numeric models and experiments it was found that it cannot be used to calculate exact temperatures but it does correctly describe the effect of different heating parameters. Over the temperature range needed to bond polymer substrates, cooling effects were found not to have a significant impact on the heating rate. The two susceptor concepts using thin metal layers (metal-plastic bonds) or structured metal features (plastic-plastic bonds) were tested and compared. While the metal-plastic bonds turned out to be too weak to be useful, the bonds formed using structured susceptors showed good strength and high leakage pressure. Based on the knowledge gained during the investigations a microfluidic device was designed. Different samples were manufactured and tested. During the tests minor leaks were observed but it was found that this was mainly due to debris which occurred during laser machining of the channels. It was concluded that induction bonding can be used to seal plastic microfluidic devices. The following guidelines can be drawn up for the design of susceptors and process optimisation: Materials with low resistivity perform better; For very thin susceptors the effect of permeability on the heating rate is negligible; The cross-sectional area of the susceptor should be as large as possible to reduce resistance; The thickness of the susceptor should be of similar dimensions to the penetration depth or smaller to increase homogeneity of heat dissipation; The shape of the susceptor should follow the shape of the inductor coil, or vice-versa, to increase homogeneity of heat dissipation; The susceptor should form a closed circuit; Higher bonding pressure leads to stronger bonds and allows reduced heating times; Pulsed heating performs better than continuous heating in terms of limited melt area and good bond strength. The drawbacks of the technique are explained as well: introducing additional materials leads to additional process steps. Also the structuring and placement of the susceptor was identified to be problematic. In this project the structured susceptor was placed manually but that is not feasible for mass manufacture. To be able to use the technique efficiently a concept of manufacturing the susceptor has to be found to allow precise alignment of complex designs.

Page generated in 0.0388 seconds