• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Swash plate pumps – the key to the future

Mohn, Gordon, Nafz, Timo 02 May 2016 (has links) (PDF)
Due to many advantages, swash plate pumps are wide spread in hydraulic systems. The main advantages are the through drive capability, the adjustability and most of all, the high power density. Their application range is limited, historically, to 450bar including medium and higher volume sizes. In higher pressure range, constant pumps such as wobbling disks or radial piston pumps are normally used. This is because the higher stressed parts can be dimensioned much bigger. Pumps with lower power such as constant displacement gear pumps are generally used in low price applications. In order to enlarge the application range of swash plate pumps, their advantages have to be further improved and strengthened. This paper shows by example how the pressure of the basic series A4VSO was increased up to a nominal pressure of 630bar and the historical pressure mark of 450bar could be exceeded. This increase in pressure level enables for example steel treatment manufacturers to reduce their component sizes without the need of a pressure transducer. Furthermore the power density of the redesigned HA4VSO was increased by 36%, compared to the standard A4VSO, by significantly increasing the self-priming speed. On the other side of the application range, in lower power mobile applications such as small tractors, forklift and skid steer loader, there is an increasing demand for less exhaust emissions and better fuel economy. The energy saving potential by changing from a hydraulic system with constant hydraulic pumps to variable hydraulic pumps is already proven on high power applications. By developing the variable axial piston pump A1VO to the requirements of lower horse power application, it is now also possible to realize such savings in lower horse power applications. Furthermore efficiency of the pump itself can be improved. An example of this is shown by way of the new A4 series 33.
2

Swash plate pumps – the key to the future

Mohn, Gordon, Nafz, Timo January 2016 (has links)
Due to many advantages, swash plate pumps are wide spread in hydraulic systems. The main advantages are the through drive capability, the adjustability and most of all, the high power density. Their application range is limited, historically, to 450bar including medium and higher volume sizes. In higher pressure range, constant pumps such as wobbling disks or radial piston pumps are normally used. This is because the higher stressed parts can be dimensioned much bigger. Pumps with lower power such as constant displacement gear pumps are generally used in low price applications. In order to enlarge the application range of swash plate pumps, their advantages have to be further improved and strengthened. This paper shows by example how the pressure of the basic series A4VSO was increased up to a nominal pressure of 630bar and the historical pressure mark of 450bar could be exceeded. This increase in pressure level enables for example steel treatment manufacturers to reduce their component sizes without the need of a pressure transducer. Furthermore the power density of the redesigned HA4VSO was increased by 36%, compared to the standard A4VSO, by significantly increasing the self-priming speed. On the other side of the application range, in lower power mobile applications such as small tractors, forklift and skid steer loader, there is an increasing demand for less exhaust emissions and better fuel economy. The energy saving potential by changing from a hydraulic system with constant hydraulic pumps to variable hydraulic pumps is already proven on high power applications. By developing the variable axial piston pump A1VO to the requirements of lower horse power application, it is now also possible to realize such savings in lower horse power applications. Furthermore efficiency of the pump itself can be improved. An example of this is shown by way of the new A4 series 33.
3

Mathematical Modeling and Analysis of a Variable Displacement Hydraulic Bent Axis Pump Linked to High Pressure and Low Pressure Accumulators

Abuhaiba, Mohammad 16 June 2009 (has links)
No description available.

Page generated in 0.0598 seconds