• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mechanisms and implications of sodium loss in sweat during exercise in the heat for patients with cystic fibrosis and healthy individuals

Brown, Mary Beth 17 November 2009 (has links)
Our aim was to understand mechanisms responsible for excessive electrolyte loss in the sweat gland and the potential impact on fluid balance during exercise in heat stress conditions. Human physiological testing under exercise/heat stress and immunofluorescence staining of sweat glands from skin biopsies were compared between healthy individuals (with normal and high sweat sodium chloride concentration, [NaCl]) and with cystic fibrosis patients (CF), who exhibit excessively salty sweat due to a defect of Cl- channel cystic fibrosis transmembrane conductance regulator (CFTR). Three novel findings are presented. First, excessively salty sweat may be associated with reduced expression of CFTR in the sweat gland reabsorptive duct of healthy individuals in addition to in those with CF; however, although a link to a CF gene mutation in healthy individuals with high sweat [NaCl] was not demonstrated, the possibility of an undetected CFTR mutation or polymorphism remains to be investigated as an underlying mechanism. Two, CF and healthy individuals with excessively salty sweat respond to moderate dehydration (3% body weight loss during exercise) with an attenuated rise in serum osmolality, greater relative loss in plasma volume, but similar perceived thirst compared to healthy individuals with "normal" sweat [NaCl]. However, individuals with CF respond to rehydration with hypotonic beverage by drinking less ad libitum in response to reduced serum [NaCl], suggesting that thirst-guided fluid replacement may be more appropriate for this population rather than restoring 100% of sweat loss following dehydration as is often recommended in healthy individuals.
2

Effect of Stratum Corneum Hydration on the Composition of Sweat Collected by a Local Sweat Patch Method

Taylor, Penny Renee 16 July 2009 (has links) (PDF)
The purpose of this study was to determine the effect of stratum corneum (SC) hydration by distilled water on SC ion content and sweat ion concentrations as measured by occlusive sweat patch. 10 men and 10 women completed approximately 40 minutes of moderate exercise in the heat. Select skin sites were hydrated before sweating by adhering cylinders of distilled water to forearm skin. SC samples were taken before and after exercise using the tape stripping (TS) method and sweat samples were taken with homemade filter paper sweat patches with a tegaderm backing. An increase in SC hydration was verified by a reduction in SC potassium concentration (p<0.05). SC hydration caused a significant decrease in sweat potassium (K+), calcium (Ca++), and lactate (Lac-) concentration: K+ =8.14 ± 0.46 to 6.56 ± 0.46, Ca++ = 0.86 ± 0.17 to 0.67 ± 0.18, Lac- = 11.64 ± 1.36 to 8.82 ± 1.11, euhydrated to hyperhydrated respectively(p<0.05). SC sodium (Na+) and K+ concentration increased after sweating without a sweat patch (p<0.05). Our data do not dispute the idea that electrolytes can be leached from the SC by distilled water or sweat trapped within an occlusive dressing. However, our data indicate that during normal sweating the SC "dehydrates" resulting in an increase in the electrolyte concentration. As such, we propose that the occlusive dressing does trap sweat on the skin but the important end result is that it prevents water movement out of the SC and thereby producing a more concentrated sweat.

Page generated in 0.0591 seconds