• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • Tagged with
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Experimental Verification and Comparison of Different Stabilizing Controllers for a Rotary Inverted Pendulum

AL-Jodah, Ammar Abdulhussein 01 December 2013 (has links)
This thesis focuses on implementation of the swing-up, switching and stabilizing controllers for the rotary inverted pendulum. An energy based method to swing-up the pendulum and a state feedback controller to keep the pendulum in the upright position are employed. The mixed H2/H∞; state feedback controller is used to stabilize the pendulum with reduced oscillations. The results have been compared with the standard full state feedback and LQR. The Quanser rotary inverted pendulum is used as the testbed. All controllers are implemented in real-time using dSPACE 1104 rapid prototyping system. Microstick II with dsPIC33FJ128MC802 and Simulink embedded target for Microchip® is used as a standalone way to implement the controllers.
2

Stabilizace inverzního kyvadla / Pendulum stabilization

Maralík, Marek January 2020 (has links)
The diploma thesis deals with putting the pendulum into upright position and its stabilization on a real system. The opening chapter describes the limiting various implementation inverse pendulums, the use of major laboratory tasks in industry, and the selection of appropriate methods for stabilization. The real system was properly identified and parameterized. The mathematical model of the inverse pendulum was derived using the Lagrange method of the second type, the nonlinear system was converted into a status description and linearized for the needs of the state controller design. The system was simulated in the Matlab Simulink environment. The LQR controller was chosen as the regulator stabilizing in upright cases. A Kalman controller in discrete form was prepared for the filter signal and estimation of residual states. The energy method was chosen for the upright pendulums. The proposed methods were tested and implemented in simulation and on a real system.
3

Modelování, identifikace a řízení rotačního kyvadla / Modelling, identification and control of rotary pendulum

Klusáček, Ondřej January 2009 (has links)
The diploma thesis deals with control of rotary inverted pendulum - Furuta pendulum. Solution for power electronics, sensors and coupling with PC is described, identification of parameters and nonlinear simulation model in Matlab/Simulink and SimMechanics toolbox is presented. Second type Lagrange equation is used for determination of equations of motion. Controll system based on state-space model of mechanism and LQR algorithm for design of state-space controller is used and switching between swing-up cotroller a stabilizing state-space control is achieved according to actual angular position of pendulum's angle. Input integrator eliminating steady state error was used with success.
4

Návrh a realizace demonstračního modelu dvojítého kyvadla / Design and implementation of demonstration model "double inverted pendulum"

Slabý, Vít January 2018 (has links)
This thesis describes the process of rebuilding an experimental model of a single pendulum on a cart into the double pendulum on a cart. The control algorithm in MATLAB/Simulink environment for stabilization of the pendulum in the inverse position is designed. For this purpose, LQR state feedback control was implemented. Also method for swinging the pendulum into inverse position from stable state (swing-up) was designed. Feedforward method was utilised for swing-up control. In the thesis, functionality of these algorithms is shown.
5

Návrh a řízení modelu laboratorního dvojitého kyvadla / Design and control of laboratory double pendulum model

Kirchner, Tomáš January 2020 (has links)
Improvement of the current double inverted pendulum model on a cart as well as a new LQG control and swing-up realization are the main goal of this thesis. Movement of the cart is driven by DC motor and gear belt mechanism. At first the control algorithms were simulated in Simulink program and then also implemented into the real system with MF624 card.
6

Návrh vestavěného systému pro řízení výukového modelu rotačního kyvadla / Design of embedded system for control of educational model of rotary pendulum

Jajtner, Jan January 2015 (has links)
The basic aim of this work is to improve existing model of rotational inverted pendulum by adding new mechanical features, implement the control algorithm to dsPIC microcontroller and develop related control electronics thus extending the functionality of current model while making it more compact. The work contains derivation of dynamic equations both by means of analytical methods and multi-body formalism of SimMechanics. These are used to design a state controller stabilizing the pendulum in inverse position. In addition, parameters of the system are being estimated experimentally. Swing-up controller is developed to drive the pendulum to unstable position. Various state estimators are added to controller to improve the control process while comparing their overall performance. The last point is devoted to development of superior state-automaton designed to switch between different regulating modes including fail-detection algorithms providing smooth operation of the model.
7

Návrh řízení rotačního inverzního kyvadla / Control Design of the Rotation Inverted Pendulum

Cejpek, Zdeněk January 2019 (has links)
Aim of this thesis is building of a simulator model of a rotary (Furuta) pendulum and design of appropriate regulators. This paper describes assembly of a nonlinear simulator model, using Matlab–Simulink and its library Simscape–Simmechanics. Furthermore the paper discuss linear discrete model obtained from the system response, using least squares method. This linear model serves as aproximation of the system for designing of two linear discrete state space regulators with sumator. These regulators are supported by a simple swing–up regulator and logics managing cooperation.

Page generated in 0.0809 seconds