• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 22
  • 7
  • 5
  • 2
  • 1
  • Tagged with
  • 41
  • 41
  • 41
  • 13
  • 12
  • 11
  • 10
  • 10
  • 9
  • 8
  • 8
  • 8
  • 7
  • 7
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Model Predictive Control of Switched Reluctance Machine Drives

Valencia Garcia, Diego Fernando January 2020 (has links)
Model predictive control (MPC) for switched reluctance machine (SRM) drives is studied in this thesis. The objective is to highlight the benefits of implementing MPC to overcome the main drawbacks of SRMs and position them as an attractive alternative among electrical drives. A comprehensive literature review of MPC for SRM is presented, detailing its current trends as an application still at an early stage. The different features of MPC are highlighted and paired with the most challenging and promising control objectives of SRMs. A vision of future research trends and applications of MPC-driven SRMs is proposed, thus drawing a road-map of future projects, barriers to overcome and potential developments. Several important applications can take advantage of the improved features that SRM can get with MPC, especially from the possibility of defining a unified control technique with the flexibility to adapt to different system requirements. The most important cluster for SRM drives is the high- and ultrahigh-speed operative regions where conventional machines cannot work efficiently. SRMs with MPC can complement then the existing demand for electrical drives with high performance under challenging conditions. Three techniques based on the finite control set model predictive control (FCS-MPC) approach are developed out of the proposed road-map. The first one defines a virtual-flux current tracking technique that improves the existing ones in operating at different speeds and more than one quadrant operation. The method is validated for low- and high- power SRMs in simulations and diverse types of current waveform, making it easy to adapt to existing current shaping techniques. It is also validated experimentally for different operating conditions and robustness against parameter variation. The second technique proposed a predictive torque control that bases its model on static-maps, thus avoiding complex analytical expressions. It improves its estimation through a Kalman filter. The third technique uses a virtual-flux predictive torque control, similar to the first technique for current tracking. The techniques are validated at a wide speed range, thus evidencing superiority in performance without modification on the control structure. / Thesis / Doctor of Philosophy (PhD)
12

ADVANCED THERMAL MANAGEMENT FOR A SWITCHED RELUCTANCE MACHINE / THERMAL MANAGEMENT FOR A SWITCHED RELUCTANCE MACHINE

Marlow, Richard January 2016 (has links)
The thermal management of electric machines is investigated with the application of techniques to a Switched Reluctance Machine and a high-speed Switched Reluctance Machine. Two novel concepts for said management of a Switched Reluctance Machine are proposed and developed: Inter-Laminate Cooling and a Continuous Toroidal Winding. The Inter-Laminate Cooling concept is developed with application to an iron core inductor which serves as a proxy for the electric machine. The experimental results confirmed the capability of the method, expressed by the effectiveness, which defines the performance measure of the applied cooling method; a concept which itself is equally applicable to other cooling methods that may be applied to any electric machine. The effectiveness also describes the gain in allowable input power to the machine which is realized to reach the same thermal limit versus the case without Inter-Laminate Cooling. The Inter-Laminate Cooling was not applied in experimental test to a Switched Reluctance Machine due to the present economic and fabrication limitations. The Continuous Toroidal Winding concept, originally conceived to permit the consideration of a fluid capillary core type of winding to enhance machine cooling, is developed to allow for peripheral cooling of the machine windings and end windings. The Continuous Toroidal Winding version of the Switched Reluctance Machine is investigated for both its thermal and electrical performance in the context of a machine that is equivalent electromagnetically to its conventional counterpart. The Continuous Toroidal Winding Switched Reluctance Machine was found to perform thermally as tested, in a manner superior to that of the conventional machine where the Toroidal machine was simulated and researched at an equivalent level of operation to the conventional machine. The electrical performance of the Toroidal Switched Reluctance Machine although supportive of the simulation analysis used to develop the machine, was not fully conclusive. This may have been due to problematic iron cores used in the construction of the experimental machines. The application of the Inter-Laminate Cooling method to a Switched Reluctance Machine is considered on an analytical basis for the special case of a High Speed Switched Reluctance Machine and found to be of net positive benefit as the machine’s iron losses are dominant over its copper losses. Application of the Inter-Laminate Cooling method to a lower speed machine, whilst beneficial, is not sufficient to significantly impact the temperature of the machine’s windings such that it would offset the loss of specific torque and power. As such, Inter-Laminate Cooling is only applicable where the net benefit is positive overall; in that the gain in input power realized is sufficient to overcome the loss of specific power and torque which will occur due to the increased machine volume. The “effectiveness” and “gain” approach for the evaluation of cooling methods applied to electric machines is a concept which should be adopted to aid in the comparative understanding of the performance of myriad different cooling methods being applied to electric machines both in research and practice, of which there is only minimal understanding. / Thesis / Doctor of Philosophy (PhD)
13

6/14 Switched Reluctance Machine Design for Household HVAC System Applications

Kasprzak, Michael January 2017 (has links)
With the unstable cost and supply of rare earth materials used in permanent magnet electric machines, many alternative machine types are being studied which are suitable for different applications. The focus of this thesis is the design of a novel 6/14 switched reluctance machine which can be fitted in a residential heating, ventilation, and air-conditioning (HVAC) application based on measured performance characteristics of an existing surface mount permanent-magnet synchronous (SMPS) machine. Residential electric motor applications are reviewed and in particular - furnace blower motor appliances. The fundamentals of switched reluctance machines are discussed, including the mechanism, operation, and control strategy. A SMPS motor which is commercially available for retrofitting into residential HVAC systems is analyzed to find its performance characteristics through disassembly, inspection, and dynamometer bench testing. The design of a novel 6/14 SRM optimization process is outlined to investigate the effect of changing the geometry values within the motor on the performance characteristics, while keeping within the size constraints of the original motor. A novel 6/14 SRM design is presented which is capable of achieving the target goals in the desired operating conditions. Further suitability testing is performed in terms of thermal analysis of the motor in the peak and continuous operating condition and mechanical stress analysis of the rotor under various rotational speeds. The full CAD assembly of the motor is designed including components from the original SMPS motor to allow for fitting in the same HVAC application. / Thesis / Master of Applied Science (MASc) / With the unstable cost and supply of rare earth materials used in permanent magnet electric motors, many alternative machine types are being studied which are suitable for different applications. The focus of this thesis is the design of a novel 6/14 switched reluctance machine which can be fitted in a residential heating, ventilation, and air-conditioning (HVAC) application based on measured performance characteristics of an existing surface mount permanent-magnet synchronous (SMPS) machine. Switched reluctance machines have a number of benefits over permanent magnet machines including that they do not have permanent magnets, are less sensitive to high heat scenarios, have lower manufacturing costs, are more robust, and are generally capable of higher operating speeds. Residential electric motor applications are reviewed and in particular - furnace blower motor appliances. The fundamentals of switched reluctance machines are discussed, including the mechanism, operation, and control strategy. A SMPS motor which is commercially available for retrofitting into residential furnace systems is analyzed to find its performance characteristics through disassembly, inspection, and dynamometer bench testing. The design of a novel 6/14 SRM optimization process is outlined to investigate the effect of changing the geometry values within the motor on the performance characteristics, while keeping within the size constraints of the original motor. A novel 6/14 SRM design is presented which is capable of achieving the target goals in the desired operating conditions. Further suitability testing is performed in terms of thermal analysis of the motor in the peak and continuous operating condition and mechanical stress analysis of the rotor under various rotational speeds. The full 3D CAD assembly model of the motor is designed including components from the original SMPS motor to allow for fitting in the same HVAC application.
14

SPLIT WINDING SWITCHED RELUCTANCE MACHINE DRIVES FOR WIDE SPEED RANGE OPERATIONS

Kilic, Oguzhan 14 September 2018 (has links)
No description available.
15

Double-Rotor Switched Reluctance Machine for Integrated Electro-Mechanical Transmission in Hybrid Electric Vehicles

Yang, Yinye 03 March 2015 (has links)
<p>The world transportation sector has been relying on the oil industry for more than a hundred years, accounting for the largest oil consumption and one third of the greenhouse gas emissions. However, with the boosting demand, escalating national energy security concerns and emerging environmental issues, reducing and displacing petroleum fuel in transportation sector has become an urging global target. As a result, hybrid electric vehicles evolve as one solution to displace petroleum fuel by utilizing vehicle onboard electrical systems, achieving higher fuel economy and less emissions by vehicle electrification and hybridization.</p> <p>However, since hybrid electric vehicles add additional electrical components and systems to realize better fuel economy, the system complexity increases and thus the cost increases. Hence, it is an objective of this thesis research to focus on the integrations and optimizations, aiming to simplify and optimize the hybrid power-trains in both system level and component level.</p> <p>This thesis contributes to a novel integrated electro-mechanical hybrid transmission that is potentially more compact and more operational flexible with fewer components compared to the GM Allison Two-Mode hybrid transmission. Comprehensive commercialized power-train transmissions are reviewed and analyzed to serve as background information for comparison. It also contributes to a family of double-rotor switched reluctance machines that are more integrated and suitable for hybrid electric vehicle applications. A prototype double-rotor switched reluctance machine has been built and tested for concept proving. Detailed machine design process is reported with the emphasis on design novelties. Finite element analysis and optimization techniques are applied and the accuracy is confirmed by the experiments. In addition, methods of machine loss analysis, thermal analysis and drive analysis are established; manufacturing and testing procedures are documented in detail that can be used for future machine designs guidance.</p> / Doctor of Philosophy (PhD)
16

Radial Force Shaping of Switched Reluctance Motor Drives for Acoustic Noise Reduction

Dorneles Callegaro, Alan 29 November 2018 (has links)
Closer attention has been given to the acoustic noise performance of electric motors as electrified powertrains penetrate into the transportation system. Particularly, switched reluctance machines (SRMs) introduce a new challenge to the acoustic noise aspects given that the radial force harmonics can excite the natural frequencies of the main circumferential modes. A practical understanding of the radial force density decomposition is crucial in identifying the primary source of acoustic noise at different operating points, and it is one of the contributions of this thesis. An analytical expression is introduced to identify the temporal harmonic orders that excite different spatial mode shapes. The mode excitation is investigated along with the sound pressure level (SPL) produced by the primary vibrating mode shapes. Acoustic noise characteristics for each mode and the corresponding natural frequency at different speeds have been analyzed by using a waterfall plot. The acoustic noise generation by conventionally controlled SRMs prevents its use on applications where acoustic comfort is required. Acoustic noise is radiated by the stator frame when a vibration mode is excited by the respective spatial order at a forcing frequency that is close to the stator's modal natural frequency. The excitation surface wave is the radial force density waveform as a function of time and spatial position. From the harmonic content analysis, a phase radial force shaping method is for switched reluctance machines is proposed. A generic function for the radial force shape is identified, whose parameters are calculated by an optimization algorithm to minimize the torque ripple for a given average torque. From the phase radial force, a current reference is obtained. The proposed methodology is experimentally validated, with a four-phase 8/6 SRM, by acoustic noise measurements at different speeds and load torque conditions. / Thesis / Doctor of Philosophy (PhD)
17

High-Speed Conventional and Mutually Coupled Toroidal-Winding Switched Reluctance Machines: Design and Comparison

Lin, Jianing January 2019 (has links)
Switched reluctance machines (SRMs) are well known for their simple and robust structure, facilitating their increasing application in many sectors, for example vacuum cleaners, where domestic machines operate at high-speed, 50,000 RPM being typical. Conventional SRMs (CSRMs) use a decoupled concentrated phase winding so that torque is predominantly only generated due to the self-inductance, which limits utilization of the machine electrical circuits. In this thesis, the toroidal winding SRM (TSRM) is introduced, which operates based on the variation of mutual inductance between different phases. The toroidal winding introduces additional winding space, and the winding is practically easy to implement, both features that lead to a relatively higher copper filling factor. The toroidal winding also benefits the machine thermal performance, as the winding is directly exposed on the machine periphery and thus accessible to cooling. All these make TSRMs interesting and meaningful for further study. Following a comprehensive comparison of CSRM and TSRM characteristics, a general torque equation is presented that is applicable to both CSRM and TSRM. Two 12-switch converters are proposed to drive three-phase TSRMs. Moreover, sinusoidal current excitation with a commercial three-phase half-bridge converter has been suggested as an alternative converter solution for TSRMs. Accordingly, a three-phase six-stator-pole, four-rotor-pole CSRM is designed and optimized with a speed of up to 50,000 rpm in this thesis. A TSRM is resized to achieve the same envelope dimension as a benchmark CSRM. Thus, a comparative study between high-speed CSRM and TSRMs has been carried out. They have both been prototyped and tested. The findings suggest that the TSRM is superior, considering machine mass and wire temperature management. The TSRM has a better torque output at lower speeds because copper losses are dominant. However, the CSRM has more advantages at higher speeds due to lower iron losses and lower DC voltage requirements. / Thesis / Doctor of Philosophy (PhD)
18

18/12 Switched Reluctance Motor Design For A Mild-Hybrid Electric Powertrain Application

Mak, Christopher January 2020 (has links)
A novel belt alternator starter (BAS) is proposed to replace the starter and alternator in a hybrid electric vehicle. The BAS designed utilizes an 18 rotor, 12 stator pole switched reluctance machine (SRM) configuration, with concentrated bar windings wound in parallel. Through iteration of various machine geometry parameters, the SRM can meet the torque and speeds demands over standardized drive cycles described by the US Environmental Protection Agency. / With the depletion of oil wells and changing global climate, a large emphasis is placed on the research, development and adoption of electric vehicles (EVs) to replace vehicles driven by internal combustion engines (ICEs). However the global supply chain is still not ready for such a large demand in EVs; therefore hybrid electric vehicles (HEVs) aim to ease the transition between ICEs and EVs. The research outlined in this thesis investigates the design of a 18 stator, 12 rotor pole (18/12) configuration switched reluctance machine (SRM) utilizing novel technologies for use as a belt alternator starter (BAS) motor in an HEV. Background research on current trends and technologies for electric motors and vehicles is performed before evaluating initial geometry for the motor core to be designed. Initial geometry is brought into JMAG to develop an electromagnetic model and begin the geometry optimization. The 18/12 design process highlights how changes to motor parameters from a geometry and winding standpoint will affect motor performance. After the motor core geometry yields suitable performance, a mechanical design is proposed encompassing the rotary assembly, cooling as well as solutions for mounting. / Thesis / Master of Applied Science (MASc) / Hybrid electric vehicles are becoming more prevalent as stricter restrictions are placed on fuel economy and emissions targets. Full electric vehicles on the other hand have not yet become the standard form of transportation due to the limits on range and infrastructure. Because of this, automotive manufacturers are researching and developing new methods in which they can meet these restrictions and limitations. Switched reluctance motors aim to be a solution to meet these demands while forging a new path by alleviating the demand on rare earth metals for the motor core. In this thesis, a design is proposed to fill an existing role in vehicle electrification best suited for a belted alternator starter.
19

EXTERNAL-ROTOR 6/10 SWITCHED RELUCTANCE MOTOR FOR AN ELECTRIC BICYCLE

Lin, Jianing 04 1900 (has links)
<p>As a cost-effective, healthy, and environmentally friendly personal mode of transportation, electric bicycles (E-bikes) are gaining an increasing market share from conventional bicycles and automobiles. Considering the legal rules in Ontario, Canada, a 500W motor makes the E-bike more attractive for travelling use. At the same time, the simple structure, high torque and power density, as well as the low cost of the switched reluctance machine (SRM) makes it a strong candidate for E-bikes.</p> <p>In this thesis, a 3-phase, external-rotor SRM with 6 stator poles and 10 rotor poles is designed for E-bike. The design of an external rotor arrangement of the 6-10 SRM topology has not previously been reported, hence it offers a new contribution to the published works. The machine design is initiated by the output power equation and is followed by a comprehensive finite element analysis (FEA). The external-rotor arrangement is chosen to facilitate ease of integration into the wheel hub structure of a typical pedal bicycle. The increasing rotor poles yield improved torque ripple reduction than more conventional (i.e. 6-4, 12-8 etc.) SRM design, which is an essential feature for low speed rider comfort.</p> <p>A new torque ripple reduction control scheme is investigated. Although the comparison shows that the torque sharing function has more positive result than angular position control with regards to torque ripple, this is at the expense of higher losses. Detailed thermal analysis ensures this machine is suitable to require no additional cooling system. The final machine design is experimentally tested via a full system prototype. Results highlight some limitation of the 2-D FEA in terms of the winding inductance calculation. Here, the end winding introduce more influence on short thickness machine, which will reduce its output power. However, its power-speed curve shows that this prototype machine has very strong overload ability.</p> / Master of Applied Science (MASc)
20

DC Reluctance Machine — A Doubly-Salient Reluctance Machine with Controlled Electrical and Mechanical Power Ripple

Swint, Ethan Baggett 08 June 2012 (has links)
Doubly-Salient Reluctance Machines (DSRMs) sidestep many of the issues with permanent magnet and induction machines and embody the lowest cost and simplest manufacturing of the motor technologies. Major drawbacks to RMs have been (1) the need for failure-prone electrolytic capacitors, (2) large torque ripple, and (3) acoustic noise. Conventionally, these drawbacks have been addressed independently either through (1) excitation control or (2) machine design, but not as a holistic system or solution. This disseratation presents a design for high-efficiency low-cost RM while producing smooth output torque and avoiding pulsating inverter input current and the associated electrolytic capacitor. We propose a method for shaping the machine reluctance profile to reduce machine torque ripple to a desired level (here, <5%) without compromising on machine efficiency or power density, a Shaped Reluctance Machine (ShRM). Furthermore, a comprehensive approach which combines both phase excitation control and machine design to cooperatively address the excursions of input and output powers from their average values which results in less than 5% ripple for both electrical and mechanical net power — essentially a DC Reluctance Machine (DCRM). Compared to conventional practice in DSRMs, electrical power ripple is reduced by 85 times and torque ripple is reduced by almost 20 times, while overall efficiency, torque density, and power density are maintained. / Ph. D.

Page generated in 0.099 seconds