• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Relative Symplectic Caps, Fibered Knots And 4-Genus

Kulkarni, Dheeraj 07 1900 (has links) (PDF)
The 4-genus of a knot in S3 is an important measure of complexity, related to the unknotting number. A fundamental result used to study the 4-genus and related invariants of homology classes is the Thom conjecture, proved by Kronheimer-Mrowka, and its symplectic extension due to Ozsv´ath-Szab´o, which say that closed symplectic surfaces minimize genus. In this thesis, we prove a relative version of the symplectic capping theorem. More precisely, suppose (X, ω) is a symplectic 4-manifold with contact type bounday ∂X and Σ is a symplectic surface in X such that ∂Σ is a transverse knot in ∂X. We show that there is a closed symplectic 4-manifold Y with a closed symplectic submanifold S such that the pair (X, Σ) embeds symplectically into (Y, S). This gives a proof of the relative version of Symplectic Thom Conjecture. We use this to study 4-genus of fibered knots in S3 . We also prove a relative version of the sufficiency part of Giroux’s criterion for Stein fillability, namely, we show that a fibered knot whose mondoromy is a product of positive Dehn twists bounds a symplectic surface in a Stein filling. We use this to study 4-genus of fibered knots in S3 . Using this result, we give a criterion for quasipostive fibered knots to be strongly quasipositive. Symplectic convexity disc bundles is a useful tool in constructing symplectic fillings of contact manifolds. We show the symplectic convexity of the unit disc bundle in a Hermitian holomorphic line bundle over a Riemann surface.

Page generated in 0.058 seconds