• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Fourier analysis on spaces generated by s.n function

Yang, Hui-min 20 June 2006 (has links)
The Besov class $B_{pq}^s$ is defined by ${ f : { 2^{|n|s}||W_n*f||_p } _{ninmathbb{Z}}in ell^q(mathbb{Z}) }$. When $s=1$, $p=q $, we know if $f in B_p$ if and only if $int_mathbb{D} |f^{(n)}(z)|^p(1-|z|^2)^{2pn-2}dv(z) <+infty$. It is shown in [5] that $int_{mathbb{D}}|f^{'}(z)|^q K(z,z)^{1-q}dv(z)= O(L(b(e^{-(q-p)^{-1}})))$ if $f in B_{L,p}$. In this paper we will show that $f in B_{L,p}$ if and only if $sum_{n=0}^{infty}2^{nq}||W_n*f||_p^q = O(L(b(e^{-(q-p)^{-1}})))$.

Page generated in 0.0939 seconds