1 |
Fourier analysis on spaces generated by s.n functionYang, Hui-min 20 June 2006 (has links)
The Besov class $B_{pq}^s$ is defined by ${ f : {
2^{|n|s}||W_n*f||_p
} _{ninmathbb{Z}}in ell^q(mathbb{Z}) }$. When $s=1$, $p=q
$, we know if $f in B_p$ if and only if
$int_mathbb{D}
|f^{(n)}(z)|^p(1-|z|^2)^{2pn-2}dv(z) <+infty$. It is shown in [5]
that $int_{mathbb{D}}|f^{'}(z)|^q K(z,z)^{1-q}dv(z)=
O(L(b(e^{-(q-p)^{-1}})))$ if $f in B_{L,p}$. In this paper we
will show that $f
in B_{L,p}$ if and only if
$sum_{n=0}^{infty}2^{nq}||W_n*f||_p^q =
O(L(b(e^{-(q-p)^{-1}})))$.
|
Page generated in 0.0939 seconds