• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Character and Evolution of Ore Mineralisation in the Te-Rich Enåsen Au-Cu Deposit, Central Sweden

Pieslinger, Simon January 2023 (has links)
The Enåsen gold deposit is located in Gävleborg county in central Sweden. Mining operations at Enåsen took place from 1984 to 1991 with Au as the main target for exploitation. The deposit has been interpreted as a metamorphosed Palaeoproterozoic analogue to near-recent epithermal Au mineralisations of a high sulphidation type. Its present mineralogy, textural-structural features, and morphology have been suggested to be the result of a combination of later deformation and regional Svecokarelian metamorphism at upper amphibolite to granulite facies conditions of the original epithermal deposit and it’s hydrothermally altered host rock. The main ore body now consists of a mineralised sillimanite quartzite gneiss. The aim of the project was to characterise the ore mineralogy, petrography and its paragenesis, evaluate the potential of Enåsen in terms of critical metals, and to test a hypothesis of partial ore melting.Among the most frequent ore minerals in the deposit are pyrite, chalcopyrite, pyrrhotite, bornite and tetrahedrite-tennantite, with variable but less abundant sulphides including covellite, digenite, mawsonite, stannite, arsenopyrite, cobaltite, galena, marcasite, sphalerite and pentlandite. Additionally, native gold, Se-bearing tellurobismuthite, hessite, tsumoite, pilsenite, rickardite, vulcanite, altaite, molybdenite, frohbergite, montbrayite, tellurantimony, löllingite and tellurbismuthantimony. While not an ore mineral here, rutile occurs abundantly. The ore mineral assemblages have seemingly at least partially melted. This is evidenced by failed quenching textures in the form of abundant multi-scale symplectites, potential sharp dihedral angles, localised concentrations of low melting point chalcophile elements (LMCE) + Au and Ag and arrays of multiphase sulphide/sulphosalt ± gold inclusions, as well as available mineral stability data considering that the ore assemblages have been subjected to upper amphibolite/granulite facies conditions followed by ductile and brittle deformation stages. Some ore mineral relationships have been described. Further studies would be required for a full paragenesis. The potential of Enåsen type deposits in terms of critical or near critical metals and semi-metals is likely to be as biproduct extraction in a mining operation aimed at gold. The most relevant element is likely to be bismuth, followed by tellurium and antimony.
2

Qualitative and quantitative petrography of meta-mafic rocks at Ölme, in the Eastern Segment of the Sveconorwegian orogen

Carlsson, Diana January 2015 (has links)
Meta-mafic intrusions with an intrusion age of 1.6-0.9 Ga are found along a north-south trend in theTransitional section of the Eastern Segment in Sweden. These intrusions are garnet-bearing and thus anexception to other meta-mafic intrusions found in Sweden. Meta-mafic intrusions that are garnet-bearingare usually found in the Caledonides to the northeast and in the south west of Sweden where the pressureshave been naturally high due to orogenic events or subduction.The study was conducted on these intrusions around the community of Ölme, to understand themetamorphic and metasomatic history of the area. The focus lies on the transition from magmaticgabbroic intrusions to metamorphosed metagabbros and highly foliated garnet-amphibolites. AveragePT estimates was calculated using THERMOCALC and classical geothermobarometry, so that acomparison between the qualitative and quantitative data could be made.The study indicates metamorphism at amphibolite to upper amphibolite facies conditionsfor the metagabbros and the garnet-amphibolites.Average PT-estimates for the garnet-amphibolites gives metamorphic peak temperatures of 680°-730° Cwith pressures of 9.0-11.0 kbar at the Träfors locality, and metamorphic peak temperatures of 660°-770° Cwith pressures of 9.5-11.0 kbar at the Skråkvik locality. These results are comparable to research donefurther to the south on similar intrusions, with temperatures of 700° C and pressures of 10 kbar.It is concluded that the meta-mafic intrusions at the Skråkvik locality have been metamorphosed in adry system, in contrast to the Träfors locality which seems to have been affected by more pervasiveretrograde metamorphism and fluid-rock interaction. It is also concluded that mafic intrusionscan preserve their magmatic textures even under high pressure conditions.
3

Deformation mechanisms and strain localization in the mafic continental lower crust

Degli Alessandrini, Giulia January 2018 (has links)
The rheology and strength of the lower crust play a key role in lithosphere dynamics, influencing the orogenic cycle and how plate tectonics work. Despite their geological importance, the processes that cause weakening of the lower crust and strain localization are still poorly understood. Through microstructural analysis of naturally deformed samples, this PhD aims to investigate how weakening and strain localization occurs in the mafic continental lower crust. Mafic granulites are analysed from two unrelated continental lower crustal shear zones which share comparable mineralogical assemblages and high-grade deformation conditions (T > 700 °C and P > 6 Kbar): the Seiland Igneous Province in northern Norway (case-study 1) and the Finero mafic complex in the Italian Southern Alps (case-study 2). Case-study 1 investigates a metagabbroic dyke embedded in a lower crustal metasedimentary shear zone undergoing partial melting. Shearing of the dyke was accompanied by infiltration of felsic melt from the adjacent partially molten metapelites. Findings of case-study 1 show that weakening of dry and strong mafic rocks can result from melt infiltration from nearby partially molten metasediments. The infiltrated melt triggers melt-rock reactions and nucleation of a fine-grained (< 10 µm average grain size) polyphase matrix. This fine-grained mixture deforms by diffusion creep, causing significant rheological weakening. Case-study 2 investigates a lower crustal shear zone in a compositionally-layered mafic complex made of amphibole-rich and amphibole-poor metagabbros. Findings of case-study 2 show that during prograde metamorphism (T > 800 °C), the presence of amphibole undergoing dehydration melting reactions is key to weakening and strain localization. Dehydration of amphibole generates fine-grained symplectic intergrowths of pyroxene + plagioclase. These reaction products form an interconnected network of fine-grained (< 20 µm average grain size) polyphase material that deforms by diffusion creep, causing strain partitioning and localization in amphibole-rich layers. Those layers without amphibole fail to produce an interconnected network of fine grained material. In this layers, plagioclase deforms by dislocation creep, and pyroxene by microfracturing and neocrystallization. Overall, this PhD research highlights that weakening and strain localization in the mafic lower crust is governed by high-T mineral and chemical reactions that drastically reduce grain size and trigger diffusion creep.

Page generated in 0.1012 seconds