• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Novel Roles for Reelin in Retinogeniculate Targeting

Haner, Cheryl 02 August 2010 (has links)
In the developing visual system, the axon of a pre-synaptic cell must be guided to a post-synaptic partner. Retinal ganglion cells (RGCs) in the eye are an excellent model to study this process. Multiple classes exist that respond to specific types of light input, and these project to different destinations in the brain that process distinct types of information. The RGC axons that navigate to the lateral geniculate nucleus (LGN) do so in a class-specific manner. Axons from RGCs that mediate non-image forming functions innervate the ventral LGN (vLGN) and the intergeniculate leaflet (IGL). Axons from RGCs that process image-forming information bypass these regions to innervate the dorsal LGN (dLGN). The extracellular protein reelin was identified as a potential factor in RGC axonal targeting of the vLGN and IGL, and the reeler mutant mouse used to study the effects of its functional absence. Anterograde labeling of RGCs and their axons with Cholera toxin B (CTB) revealed reduced patterns of retinal innervation to the vLGN and IGL in mutant mice. Moreover, the absence of functional reelin resulted in axons incorrectly growing into inappropriate regions of the thalamus. We identified these misrouted axons as those of the intrinsically photosensitive RGCs (ipRGCS), a class of RGCs known to project to the affected subnuclei. In contrast to defects in ipRGC targeting, no deficits were seen in retinogeniculate or corticothalamic projections in classes of axons that normally target the dLGN. Immunohistochemistry did not reveal any effects of the absence of the functional reelin on the LGN cytoarchitecture, which is unlike many other brain regions altered in the reeler. In summary, results suggest that intact reelin is required for class-specific retinogeniculate targeting to the vLGN and IGL. The defects are likely to be in targeting and not in neuronal positioning.
2

Etude de la diversité neuronale au sein du Globus Pallidus : analyse neurochimique, électrophysiologique et manipulation optogénétique d’un sous-type neuronal chez le rongeur / Study of neuronal diversity in the Globus Pallidus : neurochemical, electrophysiological analysis and optogenetic manipulation of neuronal subtype in rodents

Abdi, Azzedine 28 November 2013 (has links)
Le réseau des ganglions de la base (GB) est un ensemble de structures sous corticales, dont la principale fonction est le contrôle du mouvement volontaire. Le Globus Pallidus (GP), équivalent du GPe chez le primate, est un noyau constitué exclusivement de neurones GABAergiques, qui joue un rôle clé dans le fonctionnement des GB de par ses projections inhibitrices diffuses sur l’ensemble des structures de ce macrocircuit. Bien qu’une diversité neuronale au sein du GP ait été suggérée sur les bases de l’origine embryonnaire, de l’expression de protéines spécifiques ou encore de l’activité électrique des neurones, ces différents paramètres n’ont pas été corrélés de manière claire. Notre premier objectif a donc été de corréler les propriétés membranaires de neurones du GP enregistrés en patch-clamp sur des tranches de cerveau de rat avec l’expression spécifique de deux marqueurs neuronaux : une protéine liant le calcium, la parvalbumine (PV) ou un facteur de transcription, Forkhead Box 2 (FoxP2). Nous avons observé des différences électrophysiologiques significatives entre les neurones PV-positifs et FoxP2-positifs. Ce résultat nous a amené à formuler l’hypothèse qu’ayant des propriétés distinctes, les neurones PV-positifs et FoxP2-positifs pouvaient être connectés de manière différente au sein du réseau des ganglions de la base. Nous avons donc réalisé des expériences de traçage neuronal in vivo afin d’identifier les structures cibles de chaque sous-population. Nous montrons que les neurones PV-positifs projettent sur les structures de sortie des ganglions de la base tandis que les neurones FoxP2-positifs projettent uniquement sur le striatum. Enfin, le GP étant majoritairement composé de neurones PV-positifs, nous avons décidé de manipuler spécifiquement l’activité électrique de cette population in vitro et in vivo grâce à l’optogénétique. Nous présentons des résultats montrant que la modulation de l’activité électrique des neurones PV-positifs modifie le comportement moteur chez l’animal vigile. Nos résultats d’immunohistochimie et d’électrophysiologie in vitro démontrent pour la première fois l’existence d’une diversité neuronale au sein du GP. Nos expériences constituent la première étude du rôle des neurones PV-positifs dans le contrôle du mouvement volontaire. / Globus Pallidus (GP in Rodents; GPe in Primates) which belongs to the indirect pathway of basal ganglia is often, if not always, considered as an homogeneous entity which simply relays striatal information through the subthalamic nucleus, downstream to the output of basal ganglia, the substantia nigra pars reticulata. Prototypical GP neurons are often described as fast-spiking GABAergic cells which express parvalbumin (PV) as a neurochemical marker. However, cellular heterogeneity in GP has been suggested by anatomical, neurochemical, fate mapping analysis and electrophysiological activity in vivo but a clear demonstration of the existence of distinct cell types in GP, which requires by definition correlation of electrophysiological activity with neurochemistry and structure, is still missing. The objective of my PhD was i) to determine if the expression of specific neuronal markers in GP neurons is correlated with specific electrophysiological properties, ii) to understand the function of identified cell types in motor control, in order to prove that neuronal diversity exists and matters in GP. We show that electrical activity and repertoire of ionic channels differ in PV-positive and FoxP2-positive neurons. We demonstrate that PV-positive neurons do project on downstream structures whereas FoxP2-positive neurons exclusively target striatum. We report that manipulating PV-positive neurons using optogenetics induce changes in motor behavior. Thus, our results contribute to highlight the function of GP in motor control.

Page generated in 0.0716 seconds