Spelling suggestions: "subject:"synchronisation""
1 |
Improving the quality of bug data in software repositoriesAuwal, Bilyaminu Romo January 2016 (has links)
Context : Researchers have increasingly recognised the benefit of mining software repositories to extract information. Thus, integrating a version control tool (VC tool) and bug tracking tool (BT tool) in mining software repositories as well as synchronising missing bug tracking data (BT data) and version control log (VC log) becomes of paramount importance, in order to improve the quality of bug data in software repositories. In this way, researchers can do good quality research for software project benefit especially in open source software projects where information is limited in distributed development. Thus, shared data to track the issues of the project are not common. BT data often appears not to be mirrored when considering what developers logged as their actions, resulting in reduced traceability of defects in the development logs (VC logs). VC system (Version control system) data can be enhanced with data from bug tracking system (BT system), because VC logs reports about past software development activities. When these VC logs and BT data are used together, researchers can have a more complete picture of a bug’s life cycle, evolution and maintenance. However, current BT system and VC systems provide insufficient support for cross-analysis of both V Clogs and BT data for researchers in empirical software engineering research: prediction of software faults, software reliability, traceability, software quality, effort and cost estimation, bug prediction, and bug fixing. Aims and objectives: The aim of the thesis is to design and implement a tool chain to support the integration of a VC tool and a BT tool, as well as to synchronise the missing VC logs and BT data of open-source software projects automatically. The syncing process, using Bicho (BT tool) and CVSAnalY (VC tool), will be demonstrated and evaluated on a sample of 344 open source software (OSS) projects. Method: The tool chain was implemented and its performance evaluated semi-automatically. The SZZ algorithm approach was used to detect and trace BT data and VC logs. In its formulation, the algorithm looks for the terms "Bugs," or "Fixed" (case-insensitive) along with the ’#’ sign, that shows the ID of a bug in the VC system and BT system respectively. In i addition, the SZZ algorithm was dissected in its formulation and precision and recall analysed for the use of “fix”, “bug” or “# + digit” (e.g., #1234), was detected was detected when tracking possible bug IDs from the VC logs of the sample OSS projects. Results: The results of this analysis indicate that use of “# + digit” (e.g., #1234) is more precise for bug traceability than the use of the “bug” and “fix” keywords. Such keywords are indeed present in the VC logs, but they are less useful when trying to connect the development actions with the bug traces – that is, their recall is high. Overall, the results indicate that VC log and BT data retrieved and stored by automatic tools can be tracked and recovered with better accuracy using only a part of the SZZ algorithm. In addition, the results indicate 80-95% of all the missing BT data and VC logs for the 344 OSS projects has been synchronised into Bicho and CVSAnalY database respectively. Conclusion: The presented tool chain will eliminate and avoid repetitive activities in traceability tasks, as well as software maintenance and evolution. This thesis provides a solution towards the automation and traceability of BT data of software projects (in particular, OSS projects) using VC logs to complement and track missing bug data. Synchronising involves completing the missing data of bug repositories with the logs de tailing the actions of developers. Synchronising benefit various branches of empirical software engineering research: prediction of software faults, software reliability, traceability, software quality, effort and cost estimation, bug prediction ,and bug fixing.
|
2 |
Qualitative analysis of synchronizing probabilistic systems / Analyse qualitative des systèmes probabilistes synchronisantsShirmohammadi, Mahsa 10 December 2014 (has links)
Les Markov Decision Process (MDP) sont des systèmes finis probabilistes avec à la fois des choix aléatoires et des stratégies, et sont ainsi reconnus comme de puissants outils pour modéliser les interactions entre un contrôleur et les réponses aléatoires de l'environment. Mathématiquement, un MDP peut être vu comme un jeu stochastique à un joueur et demi où le contrôleur choisit à chaque tour une action et l'environment répond en choisissant un successeur selon une distribution de probabilités fixée.Il existe deux incomparables représentations du comportement d'un MDP une fois les choix de la stratégie fixés.Dans la représentation classique, un MDP est un générateur de séquences d'états, appelées state-outcome; les conditions gagnantes du joueur sont ainsi exprimées comme des ensembles de séquences désirables d'états qui sont visités pendant le jeu, e.g. les conditions de Borel telles que l'accessibilité. La complexité des problèmes de décision ainsi que la capacité mémoire requise des stratégies gagnantes pour les conditions dites state-outcome ont été déjà fortement étudiées.Depuis peu, les MDPs sont également considérés comme des générateurs de séquences de distributions de probabilités sur les états, appelées distribution-outcome. Nous introduisons des conditions de synchronisation sur les distributions-outcome, qui intuitivement demandent à ce que la masse de probabilité s'accumule dans un (ensemble d') état, potentiellement de façon asymptotique.Une distribution de probabilités est p-synchrone si la masse de probabilité est d'au moins p dans un état; et la séquence de distributions de probabilités est toujours, éventuellement, faiblement, ou fortement p-synchrone si, respectivement toutes, certaines, infiniment plusieurs ou toutes sauf un nombre fini de distributions dans la séquence sont p-synchrones.Pour chaque type de synchronisation, un MDP peut être(i) assurément gagnant si il existe une stratégie qui génère une séquence 1-synchrone;(ii) presque-assurément gagnant si il existe une stratégie qui génère une séquence (1-epsilon)-synchrone et cela pour tout epsilon strictement positif;(iii) asymptotiquement gagnant si pour tout epsilon strictement positif, il existe une stratégie produisant une séquence (1-epsilon)-synchrone.Nous considérons le problème consistant à décider si un MDP est gagnant, pour chaque type de synchronisation et chaque mode gagnant: nous établissons les limites supérieures et inférieures de la complexité de ces problèmes ainsi que la capacité mémoire requise pour une stratégie gagnante optimale.En outre, nous étudions les problèmes de synchronisation pour les automates probabilistes (PAs) qui sont en fait des instances de MDP où les contrôleurs sont restreint à utiliser uniquement des stratégies-mots; c'est à dire qu'ils n'ont pas la possibilité d'observer l'historique de l'exécution du système et ne peuvent connaitre que le nombre de choix effectués jusque là. Les langages synchrones d'un PA sont donc l'ensemble des stratégies-mots synchrones: nous établissons la complexité des problèmes des langages synchrones vides et universels pour chaque mode gagnant.Nous répercutons nos résultats obtenus pour les problèmes de synchronisation sur les MDPs et PAs aux jeux tour à tour à deux joueurs ainsi qu'aux automates finis non-déterministes. En plus de nos résultats principaux, nous établissons de nouveaux résultats de complexité sur les automates finis alternants avec des alphabets à une lettre. Enfin, nous étudions plusieurs variations de synchronisation sur deux instances de systèmes infinis que sont les automates temporisés et pondérés. / Markov decision processes (MDPs) are finite-state probabilistic systems with bothstrategic and random choices, hence well-established to model the interactions between a controller and its randomly responding environment.An MDP can be mathematically viewed as a one and half player stochastic game played in rounds when the controller chooses an action,and the environment chooses a successor according to a fixedprobability distribution.There are two incomparable views on the behavior of an MDP, when thestrategic choices are fixed. In the traditional view, an MDP is a generator of sequence of states, called the state-outcome; the winning condition of the player is thus expressed as a set of desired sequences of states that are visited during the game, e.g. Borel condition such as reachability.The computational complexity of related decision problems and memory requirement of winning strategies for the state-outcome conditions are well-studied.Recently, MDPs have been viewed as generators of sequences of probability distributions over states, calledthe distribution-outcome. We introduce synchronizing conditions defined on distribution-outcomes,which intuitively requires that the probability mass accumulates insome (group of) state(s), possibly in limit.A probability distribution is p-synchronizing if the probabilitymass is at least p in some state, anda sequence of probability distributions is always, eventually,weakly, or strongly p-synchronizing if respectively all, some, infinitely many, or all but finitely many distributions in the sequence are p-synchronizing.For each synchronizing mode, an MDP can be (i) sure winning if there is a strategy that produces a 1-synchronizing sequence; (ii) almost-sure winning if there is a strategy that produces a sequence that is, for all epsilon > 0, a (1-epsilon)-synchronizing sequence; (iii) limit-sure winning if for all epsilon > 0, there is a strategy that produces a (1-epsilon)-synchronizing sequence.We consider the problem of deciding whether an MDP is winning, for each synchronizing and winning mode: we establish matching upper and lower complexity bounds of the problems, as well as the memory requirementfor optimal winning strategies.As a further contribution, we study synchronization in probabilistic automata (PAs), that are kind of MDPs where controllers are restricted to use only word-strategies; i.e. no ability to observe the history of the system execution, but the number of choices made so far.The synchronizing languages of a PA is then the set of all synchronizing word-strategies: we establish the computational complexity of theemptiness and universality problems for all synchronizing languages in all winning modes.We carry over results for synchronizing problems from MDPs and PAs to two-player turn-based games and non-deterministic finite state automata. Along with the main results, we establish new complexity results foralternating finite automata over a one-letter alphabet.In addition, we study different variants of synchronization for timed andweighted automata, as two instances of infinite-state systems.
|
3 |
Qualitative analysis of probabilistic synchronizing systems / Analyse qualitative des systèmes probabilistes synchronisantsShirmohammadi, Mahsa 10 December 2014 (has links)
Markov decision processes (MDPs) are finite-state probabilistic systems with both strategic and random choices, hence well-established to model the interactions between a controller and its randomly responding environment. An MDP can be mathematically viewed as a one and half player stochastic game played in rounds when the controller chooses an action, and the environment chooses a successor according to a fixed probability distribution.<p><p>There are two incomparable views on the behavior of an MDP, when the strategic choices are fixed. In the traditional view, an MDP is a generator of sequence of states, called the state-outcome; the winning condition of the player is thus expressed as a set of desired sequences of states that are visited during the game, e.g. Borel condition such as reachability. The computational complexity of related decision problems and memory requirement of winning strategies for the state-outcome conditions are well-studied.<p><p>Recently, MDPs have been viewed as generators of sequences of probability distributions over states, called the distribution-outcome. We introduce synchronizing conditions defined on distribution-outcomes, which intuitively requires that the probability mass accumulates in some (group of) state(s), possibly in limit. A probability distribution is p-synchronizing if the probability mass is at least p in some state, and a sequence of probability distributions is always, eventually, weakly, or strongly p-synchronizing if respectively all, some, infinitely many, or all but finitely many distributions in the sequence are p-synchronizing.<p><p>For each synchronizing mode, an MDP can be (i) sure winning if there is a strategy that produces a 1-synchronizing sequence; (ii) almost-sure winning if there is a strategy that produces a sequence that is, for all epsilon > 0, a (1-epsilon)-synchronizing sequence; (iii) limit-sure winning if for all epsilon > 0, there is a strategy that produces a (1-epsilon)-synchronizing sequence.<p><p>We consider the problem of deciding whether an MDP is winning, for each synchronizing and winning mode: we establish matching upper and lower complexity bounds of the problems, as well as the memory requirement for optimal winning strategies.<p><p>As a further contribution, we study synchronization in probabilistic automata (PAs), that are kind of MDPs where controllers are restricted to use only word-strategies; i.e. no ability to observe the history of the system execution, but the number of choices made so far. The synchronizing languages of a PA is then the set of all synchronizing word-strategies: we establish the computational complexity of the emptiness and universality problems for all synchronizing languages in all winning modes.<p><p>We carry over results for synchronizing problems from MDPs and PAs to two-player turn-based games and non-deterministic finite state automata. Along with the main results, we establish new complexity results for alternating finite automata over a one-letter alphabet. In addition, we study different variants of synchronization for timed and weighted automata, as two instances of infinite-state systems. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
|
4 |
Semantics, verification, and implementation of workflows with cancellation regions and OR-joinsWynn, Moe Thandar January 2006 (has links)
Workflow systems aim to provide automated support for the conduct of certain business processes. Workflow systems are driven by workflow specifications which among others, capture the execution interdependencies between various activities. These interdependencies are modelled by means of different control flow constructors, e.g., sequence, choice, parallelism and synchronisation. It has been shown in the research on workflow patterns that the support for and the interpretation of various control flow constructs varies substantially across workflow systems. Two of the most problematic patterns relate to the OR-join and to cancellation. An OR-join is used in situations when we need to model " wait and see" behaviour for synchronisation. Different approaches assign a different (often only intuitive) semantics to this type of join, though they do share the common theme that synchronisation is only to be performed for active paths. Depending on context assumptions this behaviour may be relatively easy to deal with, though in general its semantics is complicated, both from a definition point of view (in terms of formally capturing a desired intuitive semantics) and from a computational point of view (how does one determine whether an OR-join is enabled?). Many systems and languages struggle with the semantics and implementation of the OR-join because its non-local semantics require a synchronisation depending on an analysis of future execution paths. This may require some non-trivial reasoning. The presence of cancellation features and other OR-joins in a workflow further complicates the formal semantics of the OR-join. The cancellation feature is commonly used to model external events that can change the behaviour of a running workflow. It can be used to either disable activities in certain parts of a workflow or to stop currently running activities. Even though it is possible to cancel activities in workflow systems using some sort of abort function, many workflow systems do not provide direct support for this feature in the workflow language. Sometimes, cancellation affects only a selected part of a workflow and other activities can continue after performing a cancellation action. As cancellation occurs naturally in business scenarios, comprehensive support in a workflow language is desirable. We take on the challenge of providing formal semantics, verification techniques as well as an implementation for workflows with those features. This thesis addresses three interrelated issues for workflows with cancellation regions and OR-joins. The concept of the OR-join is examined in detail in the context of the workflow language YAWL, a powerful workflow language designed to support a collection of workflow patterns and inspired by Petri nets. The OR-join semantics has been redesigned to represent a general, formal, and decidable approach for workflows in the presence of cancellation regions and other OR-joins. This approach exploits a link that is proposed between YAWL and reset nets, a variant of Petri nets with a special type of arc that can remove all tokens from a place. Next, we explore verification techniques for workflows with cancellation regions and OR-joins. Four structural properties have been identified and a verification approach that exploits coverability and reachability notions from reset nets has been proposed. The work on verification techniques has highlighted potential problems with calculating state spaces for large workflows. Applying reduction rules before carrying out verification can decrease the size of the problem by cutting down the size of the workflow that needs to be examined while preserving some essential properties. Therefore, we have extended the work on verification by proposing reduction rules for reset nets and for YAWL nets with and without OR-joins. The proposed OR-join semantics as well as the proposed verification approach have been implemented in the YAWL environment.
|
5 |
Hydropower generator and power system interactionBladh, Johan January 2012 (has links)
After decades of routine operation, the hydropower industry faces new challenges. Large-scale integration of other renewable sources of generation in the power system accentuates the role of hydropower as a regulating resource. At the same time, an extensive reinvestment programme has commenced where many old components and apparatus are being refurbished or replaced. Introduction of new technical solutions in existing power plants requires good systems knowledge and careful consideration. Important tools for research, development and analysis are suitable mathematical models, numerical simulation methods and laboratory equipment. This doctoral thesis is devoted to studies of the electromechanical interaction between hydropower units and the power system. The work encompasses development of mathematical models, empirical methods for system identification, as well as numerical and experimental studies of hydropower generator and power system interaction. Two generator modelling approaches are explored: one based on electromagnetic field theory and the finite element method, and one based on equivalent electric circuits. The finite element model is adapted for single-machine infinite-bus simulations by the addition of a network equivalent, a mechanical equation and a voltage regulator. Transient simulations using both finite element and equivalent circuit models indicate that the finite element model typically overestimates the synchronising and damping properties of the machine. Identification of model parameters is performed both numerically and experimentally. A complete set of equivalent circuit parameters is identified through finite element simulation of standard empirical test methods. Another machine model is identified experimentally through frequency response analysis. An extension to the well-known standstill frequency response (SSFR) test is explored, which involves measurement and analysis of damper winding quantities. The test is found to produce models that are suitable for transient power system analysis. Both experimental and numerical studies show that low resistance of the damper winding interpole connections are vital to achieve high attenuation of rotor angle oscillations. Hydropower generator and power system interaction is also studied experimentally during a full-scale startup test of the Nordic power system, where multiple synchronised data acquisition devices are used for measurement of both electrical and mechanical quantities. Observation of a subsynchronous power oscillation leads to an investigation of the torsional stability of hydropower units. In accordance with previous studies, hydropower units are found to be mechanically resilient to subsynchronous power oscillations. However, like any other generating unit, they are dependent on sufficient electrical and mechanical damping. Two experimentally obtained hydraulic damping coefficients for a large Francis turbine runner are presented in the thesis.
|
Page generated in 0.0546 seconds