• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 1
  • 1
  • Tagged with
  • 13
  • 13
  • 5
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Effect of Nanoscale Particles and Ionomer Architecture on the Crystallization Behavior of Sulfonated Syndiotactic Polystyrene

Benson, Sonya Denese 04 May 2011 (has links)
Semicrystalline ionomers are an important class of polymers that are utilized in a wide range of applications. The particular end-use applications of these materials are determined by their chemical, physical, and thermomechanical properties which are directly related to their crystallization behavior. It is therefore critical to identify structure-property relationships for these materials. Sulfonated syndiotactic polystyrene (SsPS) is used as a model semicrystalline ionomer and two approaches are utilized to control the rate of crystallization of the SsPS ionomer in the presence of ionic aggregates. The first approach investigates the effect of the incorporation of nanoscale particles, montmorillonite clay, on the crystallization behavior of SsPS. The morphology of the ionomer clay hybrids were studies via TEM and WAXD while the crystallization behavior of SsPS in the presence of the clay was evaluated using DSC. It was found that the SsPS matrix containing 5 wt.% organically-modified clay crystallized more rapidly than the sPS homopolymer containing the same clay content. This behavior is attributed to the presence of homogenously dispersed nanoscale clay platelets that act as nucleation sites distributed throughout the ionomer matrix. The second approach that employed involved the manipulation of SsPS ionomer architecture via a controlled placement of the ionic sulfonate groups along the polymer backbone. A post-polymerization sulfonation technique was developed to place the sulfonate groups along the homopolymer backbone in a non-random fashion leading to a pseudo-block ionomer architecture. The crystallization behavior of the non-randomly sulfonated SsPS ionomer is compared to randomly sulfonated SsPS using differential scanning calorimetry. The morphologies of the two ionomers were studied using SALLS and SAXS. We have found that the non-randomly sulfonated SsPS ionomer crystallizes much more rapidly than the randomly sulfonated ionomer. The more rapid crystallization behavior of the non-random ionomer to the presence of longer sequences of unsulfonated homopolymer that are able to readily organize into crystalline structures than the random SsPS ionomer containing the same ionic content. / Ph. D.
2

Phase stability in bulk crystallized syndiotactic polystyrene

Su, Chiu-Hun 21 July 2007 (has links)
Simultaneous differential scanning calorimetry (DSC), small-angle (SAXS) and wide-angle X-ray scattering (WAXS) measurements were adopted for more precise determination of the equilibrium melting temperatures (Tm*) of a and b phases in bulk-crystallized syndiotactic polystyrene. On the basis of Kratky-Porod approximation, a new method for determining crystalline lamellar thickness from SAXS profiles obtained at high temperatures where there are only limited number of discrete crystalline lamellae dispersed in the melt matrix was developed. This method is shown to be reliable as it gave comparable results obtained from the conventional 1D correlation function method for SAXS profiles obtained at lower temperatures where lamellae are closely stacked. Results of the subsequent Gibbs-Thomson analysis indicated that the trigonal a phase is the entropically favored high temperature phase with Tm* = 355 oC whereas the b phase is enthalpically favored at lower temperatures, with Tm* = 314 oC. Compared to previous held contention in the temperature-dependent phase stability of these two phases, the current phase stability assignment is more consistent with both the density and the symmetry of the corresponding crystal structures. It also explains various observations reported previously on the competition between the two polymorphs during crystallization and during melting.
3

Synthesis and Characterization of Block and Graft Syndiotactic Polystyrene Copolymer.

zhuo, yi-hong 10 July 2002 (has links)
none
4

Preparation of the Syndiotactic Polystyrene Copolymer by Chemical Modifications

Chen, Yu-Pin 03 June 2003 (has links)
The main object of this study is to explore the possibility of using metallocene catalyst and reagent toe preparation syndiotactic polystyrene (sPS) framework connected with different polymer segments. Despite its enhanced thermal stability, the stereo-regular sPS generally has poor miscibility with other conventional polymers, which substantially limits its use in commerce. Therefore, chemical modifications on sPS were attempted in this study to hopefully introduce polar chain segments into the olefinic sPS chains and to possibly vary its properties and so, its miscibility with other polymers. Here, a novel metallocene catalyst prepared from (
5

Exploiting High Surface Area Polymer Gels for Dye Adsorption

Chen, Qihang 28 April 2021 (has links)
No description available.
6

Properties and Structures of Sulfonated Syndiotactic Polystyrene Aerogel and Syndiotactic Polystyrene/Silica Hybrid Aerogel

Zhang, Huan 17 September 2014 (has links)
No description available.
7

Crystallization Behavior of Syndiotactic Polystyrenes

Su, Chiou-Huen 20 July 2004 (has links)
Reported is a study of the crystallization behavior of syndiotactic polystyrene (sPS) and its copolymers (with 4-bromostyrene as the comonomer or with atactic polystyrene arms grafted on the comonomer sites) via three sets of experiments. The first involves the study of structural identification of negatively birefringent spherulites by means of polarized light microscopy (PLM) and scanning electron microscopy (SEM). Results indicated that the optically positive and optically negative spherulites have same morphological features. Differences in the optical texture are due entirely to differences in orientation of the (anisotropic) sheaf-like precursors: the rigid nature of crystalline lamellae renders incomplete development of spherical symmetry even at the axialitic size of tens of microns. In the second part, we propose a modified approach for more precise determination of the Tm* value by taking advantage of the dual-mode distribution of crystalline lamellae in analyzing small-angle X-ray scattering (SAXS) profiles. This method should be generally applicable to other semi-crystalline polymers with dual-mode distribution in lamellar thickness. Results from wide-angle X-ray diffraction (XRD) suggest the presence of ?'-to-?" phase transformation at ca. 264 oC; no indications for the previously proposed ?-to-? transformation are identified. We therefore conclude that the ?' form is truly metastable; the ?"-form is the entropically favored high temperature phase (with Tm* = 300 oC) whereas the more ordered ?' phase (with Tm* = 288 oC) is enthalpically favored at lower temperatures. In the third set of experiments, identification of effects of copolymerization has been studied via a combination of PLM, differential scanning calorimetry (DSC), XRD, SAXS, and transmission electron microscopy (TEM). Results show that the equilibrium melting temperatures (determined via either Hoffman¡VWeeks or Gibbs¡VThomson plots) of the copolymers are significantly lower than that of the corresponding sPS homopolymer. The PLM observations indicate that the axialitic growth rates in copolymers are drastically lower than that of the corresponding homopolymer at comparable backbone length and supercooling. Both XRD and TEM results indicate preferred formation of the ?" phase upon melt crystallization in the bulk state; however, the ?" phase (instead of ?' phase that is the more commonly observed for sPS homopolymers in the bulk state) is dominant in thin films.
8

Příprava syndiotaktického polystyrenu pomocí monocyklopentadienylových komplexů titanu / Tha synthesis of syndiotactic polystyrene using monocyclopentadienyl titanium complexes

Svačina, Zdeněk January 2008 (has links)
A series of four novel halosilylsubstitued monocyclopentadienyl titanium complexes; [Si(CH3)2FCp]TiCl3 – FSiTTC, [Si(CH3)F2Cp]TiCl3 F2SiTTC, [Si(CH3)Cl2Cp]TiCl3 - Cl2SiTTC, [Si(CH3)2ClCp]TiCl3 - ClSiTTC was tested as catalytic precursors for polymerization of styrene in toluene. The maximum polymerization activity was achieved after polymerization period of 20 minutes. Activity decreased in order FSiTTC/MAO > F2SiTTC/MAO > Cl2SiTTC/MAO > ClSiTTC /MAO. Prepared polystyrenes were characterized using 13C NMR spectroscopy and DSC analysis. Syndiotacticity index of obtained PSs was determined by means of Soxhlet extraction with butan-2-one as solvent. Syndiotacticity indexes of PSs obtained by investigated catalysts possessed higher values then those obtained by standard catalysts (CpTiCl3 a Cp*TiCl3) at comparable polymerization conditions.
9

An Investigation on Compressive Mechanical Properties of Syndiotactic Polystyrene Gels and the Conductive Behavior of Syndiotactic Polystyrene Ionogels

Ariza, Nathan Robert, Ariza January 2018 (has links)
No description available.
10

An Investigation on Syndiotactic Polystyrene Aerogel Coating of Macroporous Fabric via Dip Coating Method

Fonner, Adam M. 21 June 2019 (has links)
No description available.

Page generated in 0.1138 seconds