1 |
Advances in Syndrome Coding based on Stochastic and Deterministic Matrices for SteganographyWinkler, Antje 21 February 2012 (has links) (PDF)
Steganographie ist die Kunst der vertraulichen Kommunikation. Anders als in der Kryptographie, wo der Austausch vertraulicher Daten für Dritte offensichtlich ist, werden die vertraulichen Daten in einem steganographischen System in andere, unauffällige Coverdaten (z.B. Bilder) eingebettet und so an den Empfänger übertragen.
Ziel eines steganographischen Algorithmus ist es, die Coverdaten nur geringfügig zu ändern, um deren statistische Merkmale zu erhalten, und möglichst in unauffälligen Teilen des Covers einzubetten. Um dieses Ziel zu erreichen, werden verschiedene Ansätze der so genannten minimum-embedding-impact Steganographie basierend auf Syndromkodierung vorgestellt. Es wird dabei zwischen Ansätzen basierend auf stochastischen und auf deterministischen Matrizen unterschieden. Anschließend werden die Algorithmen bewertet, um Vorteile der Anwendung von Syndromkodierung herauszustellen.
|
2 |
Asymmetric encryption for wiretap channelsAl-Hassan, Salah Yousif Radhi January 2015 (has links)
Since the definition of the wiretap channel by Wyner in 1975, there has been much research to investigate the communication security of this channel. This thesis presents some further investigations into the wiretap channel which improve the reliability of the communication security. The main results include the construction of best known equivocation codes which leads to an increase in the ambiguity of the wiretap channel by using different techniques based on syndrome coding. Best known codes (BKC) have been investigated, and two new design models which includes an inner code and outer code have been implemented. It is shown that best results are obtained when the outer code employs a syndrome coding scheme based on the (23; 12; 7) binary Golay code and the inner code employs the McEliece cryptosystem technique based on BKC0s. Three techniques of construction of best known equivocation codes (BEqC) for syndrome coding scheme are presented. Firstly, a code design technique to produce new (BEqC) codes which have better secrecy than the best error correcting codes is presented. Code examples (some 50 codes) are given for the case where the number of parity bits of the code is equal to 15. Secondly, a new code design technique is presented, which is based on the production of a new (BEqC) by adding two best columns to the parity check matrix(H) of a good (BEqC), [n; k] code. The highest minimum Hamming distance of a linear code is an important parameter which indicates the capability of detecting and correcting errors by the code. In general, (BEqC) have a respectable minimum Hamming distance, but are sometimes not as good as the best known codes with the same code parameters. This interesting point led to the production of a new code design technique which produces a (BEqC) code with the highest minimum Hamming distance for syndrome coding which has better secrecy than the corresponding (BKC). As many as 207 new best known equivocation codes which have the highest minimum distance have been found so far using this design technique.
|
3 |
Advances in Syndrome Coding based on Stochastic and Deterministic Matrices for SteganographyWinkler, Antje 01 November 2011 (has links)
Steganographie ist die Kunst der vertraulichen Kommunikation. Anders als in der Kryptographie, wo der Austausch vertraulicher Daten für Dritte offensichtlich ist, werden die vertraulichen Daten in einem steganographischen System in andere, unauffällige Coverdaten (z.B. Bilder) eingebettet und so an den Empfänger übertragen.
Ziel eines steganographischen Algorithmus ist es, die Coverdaten nur geringfügig zu ändern, um deren statistische Merkmale zu erhalten, und möglichst in unauffälligen Teilen des Covers einzubetten. Um dieses Ziel zu erreichen, werden verschiedene Ansätze der so genannten minimum-embedding-impact Steganographie basierend auf Syndromkodierung vorgestellt. Es wird dabei zwischen Ansätzen basierend auf stochastischen und auf deterministischen Matrizen unterschieden. Anschließend werden die Algorithmen bewertet, um Vorteile der Anwendung von Syndromkodierung herauszustellen.
|
Page generated in 0.0746 seconds