• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • 1
  • Tagged with
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Synthesis of Hetero-chitooligosaccharides

Issaree, Arisara January 2008 (has links)
Chitooligosaccharides are composed of linear β-(1→4)-linked 2-acetamido-2-deoxy-β-D-glucopyranose (GlcNAc) and/or 2-amino-2-deoxy-β-D-glucopyranose (GlcN). They are of interest due to their remarkable biological properties including antibacterial, antitumor, antifungal and elicitor activities. They can be obtained from the aminoglucan chitosan by chemical or enzymatic degradation which obviously affords rather heterogenous mixtures. On the other hand, chemical synthesis provides pure compounds with defined sequences of GlcNAc and GlcN monomers. The synthesis of homo- and hetero-chitobioses and hetero-chitotetraoses is described in this thesis. Dimethylmaleoyl and phthaloyl groups were used for protection of the amines. The donor was activated as the trichloroacetimidate in order to form the β-linkages. Glycosylation in the presence of trimethylsilyl trifluoromethanesulfonate, followed by N- and O-deprotection furnished chitobioses and chitotetraoses in good yields. / Chitooligosacchride bestehen aus linear β-(1→4)-verknüpften 2-acetamido-2-deoxy-β-D-glucopyranose (GlcNAc) and/or 2-amino-2-deoxy-β-D-glucopyranose (GlcN) Einheiten. Sie beanspruchen aufgrund ihrer bemerkenswerten biologischen Eigenschaften – u.a. antibakterielle, antitumor, antimykotische und Elicitor Aktivität - grosses Interesse. Sie sind durch chemischen oder enzymatischen Abbau von Chitosan zugänglich, wobei diese Methoden unausweichlich zu komplexen, sehr heterogenen Mischungen von Chiooligosacchariden führen. Chemische Synthesen von Chitooligosacchariden mit definierter Sequenz von GlcNAc und GlcN Einheiten sind daher von erheblichem Interesse. In der vorliegenden Arbeit werden Synthesen von partiell acetylierten Chitobiosen und –tetraosen beschrieben. Die Aminogruppen wurden als N-Dimethylmaleoyl- bzw. Phthaloylimide geschützt. Die Donoren wurden als Trichloacetimidate aktiviert, wobei aufgrund von Nachbargruppeneffekten ausschliesslich die β-Glycoside entstehen. Die Trimethylsilyltrifluoromethansulfonat-promovierte Glycosidierung geeigneter Akzeptoren lieferte schliesslich die Chitobiosen und die Chitotetraosen in guten Ausbeuten.
2

Isocyanat-basierte Zwillingsmonomere zur Herstellung organisch-anorganischer Hybridmaterialien: Die Verbindung der Zwillingspolymerisation mit der Isocyanat- und Polyurethanchemie

Uhlig, Daniel 08 June 2022 (has links)
Die vorliegende Arbeit hat die Kombination von Zwillingspolymerisation mit der Isocyanat- und Polyurethanchemie zum Inhalt. Dadurch wird das Verständnis der Zwillingspolymerisation erweitert und neue Ansätze zur Herstellung organisch-anorganischer Hybridmaterialien erhalten. Das Reaktionsverhalten von aminofunktionellen Zwillingsmonomeren gegenüber freien Isocyanaten wird untersucht. Durch Reaktion von 2-(3-Amino-n-propyl)-2-methyl-4H-1,3,2-benzodioxasilin mit unterschiedlichen Mono-, Diisocyanaten und isocyanatfunktionellen Prepolymeren sind Harnstoffderivate bzw. neuartige Prepolymere zugänglich, welche in der Lage sind zu polymerisieren. Die resultierenden Harnstoffe wurden charakterisiert und bezüglich ihrer Fähigkeit eine simultane Zwillingspolymerisation mit 2,2´-Spirobi[4H-1,3,2-benzodioxasilin] einzugehen untersucht. Ein Fokus lag auf der Untersuchung des Verhaltens der dargestellten Prepolymere. Diese wurden systematisch mit unterschiedlichen Polymerisationsparametern betrachtet. Eine Charakterisierung der Polymerisate erfolgte mittels Festkörper-NMR-Experimenten, Elektronenmikroskopie, TGA, sowie Extraktionsversuchen. Eine potenzielle Anwendungsmöglichkeit dieser Prepolymersysteme als Haftvermittler für Holz-Kunststoff-Verbundmaterialien wurde durch mechanische Zugscherversuche aufgezeigt. Neben der Betrachtung von 2-(3-Amino-n-propyl)-2-methyl-4H-1,3,2-benzodioxasilin-basierten Systemen wurde ein neuartiges aminofunktionelles Zwillingsmonomer, das Tris-furfuryloxy-3-aminopropylsilan erstmals dargestellt und charakterisiert. Eine Umsetzung mit Isocyanaten und isocyanatfunktionellen Prepolymer wurde analog zu den oben genannten Systemen durchgeführt. Mittels Röntgeneinkristallstrukturanalyse wurde die molekulare Struktur des entsprechenden Phenylisocyanat-Adduktes bestätigt. Die kationische Polymerisation der entsprechenden Harnstoffderivate führte zu neuartigen Hybridmaterialien, welche nach Extraktion mittels Festkörper-NMR-Experimenten charakterisiert wurden.:Inhalt 1. Einleitung und Zielsetzung 9 1.1 Einleitung und Motivation 9 1.2 Zielsetzung 10 2. Theoretische Grundlagen 12 2.1 Reaktionsverhalten der Isocyanate 12 2.1.1 Addition von H-aktiven Spezies 12 2.1.2 Allophanat- und Biuretbindungen 13 2.1.3 Dimerisierung und Trimerisierung 14 2.1.4 Thermische Stabilitäten, Reversibilität 15 2.1.5 Blockierung von Isocyanaten 17 2.2 Technisch relevante Vertreter für PU-Komponenten 19 2.2.1 Technisch verwendete Isocyanate 19 2.2.2 Alkohole 20 2.2.3 Prepolymere 21 2.2.4 Umriss einer Struktur- Eigenschaftsbeziehung von Polyurethanen 22 2.3. Modifizierung von Polyurethanen 23 2.3.1 PU Copolymere 23 2.4. Haftvermittler und Lacke auf PU-Basis 25 2.5.1. Mechanische Charakterisierung der Haftfestigkeit 26 2.5 Zwillingspolymerisation 27 2.5.1 Allgemein 27 2.5.2 Simultane Zwillingspolymerisation 28 3. Ergebnisse und Diskussion 30 3.1. Vorversuche zum Verhalten von Zwillingsmonomeren 30 3.1.1 Stabilität von Zwillingsmonomeren gegenüber freien Isocyanaten 30 3.1.2 Verhalten von Zwillingsmonomeren gegenüber substituierten Harnstoffen 33 3.1.3 Reaktion von aminofunktionellen Zwillingsmonomeren mit Monoisocyanat 34 3.1.4 Reaktion von 2-(3-Amino-n-propyl)-2-methyl-4H-1,3,2-benzodioxasilin (APSI) mit Diisocyanaten 41 3.1.5 Erkenntnisse der Voruntersuchungen mit niedermolekularen Isocyanaten 46 3.1.6 Reaktion von 2-(3-Amino-n-propyl)-2-methyl-4H-1,3,2-benzodioxasilin (APSI) mit isocyanathaltigen PU-Prepolymeren 47 3.2. Simultane Polymerisation von APSI-Isocyanat-Addukten mit Spiro 56 3.2.1. Simultane Polymerisation von APSI-p-fluoro-PI-Addukt mit Spiro 56 3.2.2 Polymerisation von APSI-IPDI-PolyTHF-Prepolymer 60 3.2.3 Simultane Polymerisation von APSI-Diisocyanat-Addukt mit Spiro 61 3.2.4 Polymerisation von Zwillingsprepolymeren 64 3.3 Aminofunktionelle Zwillingsmonomere zur Herstellung von neuartigen Polyfurfurylalkohol-Hybridmaterialien 85 3.3.1 Synthese von Tris-furfuryloxy-3-aminopropylsilan (TFAPSI) 85 3.3.2 Polymerisation von Tris-furfuryloxy-3-aminopropylsilan 85 3.3.3 Umsetzungen von Tris-furfuryloxy-3-aminopropylsilan mit Isocyanaten 87 3.3.4 Zwillingspolymerisation der Isocyanat-Addukte von 3-Aminopropyl-tris-furfuryloxysilan 90 4. Zusammenfassung und Ausblick 95 5. Experimenteller Teil 99 5.1 Chemikalien 99 5.2 Geräte 99 5.3 Synthesen 101 5.4 Polymerisationen 109 5.4.1 Polymerisation von APSI-basierten Monomeren 109 5.4.2 Polymerisation von TFAPSI-basierten Monomeren 110 6 Anhang 111 7 Literaturverzeichnis 126 Danksagung 131 Selbstständigkeitserklärung 132 Lebenslauf 133 Publikationen und Posterbeiträge 134
3

Ein Baukastensystem zum universellen Aufbau kleiner rigidifizierter Peptidomimetika und spirocyclopropanierter Wirkstoffanaloga / A toolbox-system for the formation of small rigid peptidomimetics and spirocyclopropanated drug-analogues

Limbach, Michael 02 November 2004 (has links)
No description available.
4

Metastabile intermetallische Phasen durch Niedertemperaturtransformationen von Subhalogeniden

Kaiser, Martin 06 December 2014 (has links) (PDF)
Maßgeschneiderte Eigenschaften von Funktionsmaterialien sind ein fundamentaler Aspekt für die Technologien unserer Gesellschaft und deren Weiterentwicklung. In diesem Zusammenhang bilden die Modifizierung bestehender Synthesestrategien und die Entwicklung neuartiger Synthesewege die grundlegende Voraussetzung für Innovation. Der Zugang zu den benötigten Materialien wird in den bis dato angewandten Synthesemethoden häufig durch die thermodynamische Stabilität einer Verbindung begrenzt. Zielstellung der vorliegenden Arbeit ist es, eine Strategie zur postsynthetischen Umwandlung und Modifizierung bereits vorhandener komplex strukturierter Feststoffe anzuwenden, durch die es gelingt, Zugang zu weiteren Materialien zu erhalten. Als Feststoffprekursoren wurden hierfür verschiedene ternäre und quaternäre, bismutreiche Subhalogenide gewählt, die bei niedrigen Temperaturen bis 70 °C mit dem Reduktionsmittel n-Butyllithium (nBuLi) zur Reaktion gebracht wurden, um diese in topochemischen Reaktionen zu neuen intermetallischen Phasen umzuwandeln. Die Bismutsubiodide Bi12Ni4I3, Bi8Ni8SI2 und Bi28Ni25I5 enthalten intermetallische Stäbe, deren Querschnitte nur vier bis elf Atome umfassen, was effektiven Durchmessern von ca. 0,8 bis 1,2 nm entspricht. Zudem befinden sich Iodidionen in den Kristallstrukturen, die die metallischen Stäbe voneinander separieren. Die reduktiven Behandlungen dieser Feststoffprekursoren führten jeweils zur quantitativen Deinterkalation der Iodidionen und dadurch zur Zusammenlagerung der metallischen Stäbe zu kompakten Stabpackungen. In Pseudomorphosen wurden zum einen Kristalle erhalten, die eine Vielzahl parallel angeordneter Bi3Ni-Faserbündel enthielten, zum anderen bildeten sich die bisher unbekannten, kristallinen Phasen Bi8Ni8S und Bi28Ni25. Während bei den Umwandlungen die strukturellen Charakteristiken der intermetallischen Teilstrukturen der Bismutsubiodide auf die reduzierten Phasen übertragen werden, ändern sich die elektronischen Situationen mit der Variation der Elektronenzahl. Dies lässt sich besonders gut am Beispiel der Umwandlung des Bismutsubiodids Bi28Ni25I5 in die reduzierte Phase Bi28Ni25 verdeutlichen. Die elektronische Struktur ändert sich durch die Reduktion kaum, sodass die zusätzlichen Elektronen im intermetallischen Teil antibindende Zustände füllen. Das intermetallische Bindungssystem verhält sich dabei wie ein strukturell rigides Elektronenreservoir und toleriert die Änderung der Elektronenzahl bei der topochemischen Umwandlung zu Bi28Ni25. Mit der elektronisch ungünstigen Situation geht die Metastabilität der reduzierten intermetallischen Phase einher. Die reduktive Behandlung des Bismutsubiodids Bi13Pt3I7 führte nicht nur zur selektiven topochemischen Deinterkalation von Iodidionen sondern zusätzlich zum Ausbau von Bismutatomen, wodurch die in Bi13Pt3I7 vorhandenen Iodidobismutatschichten in Iodidschichten umgewandelt werden. Die intermetallischen Schichten der Ausgangsverbindung bleiben erhalten und nähern sich an, sodass das bis dato unbekannte Bismutsubiodid Bi12Pt3I5 resultiert. Das topotaktische Fortbestehen der intermetallischen Schichten zeigt sich dabei an intermediär gebildeten Kompositkristallen aus Mutter- und Tochterverbindung. Durch den Abbau der isolierenden Iodidobismutat¬schichten erfolgen die elektronische Kopplung der intermetallischen Schichten und der Übergang des zwei-dimensionalen Metalls Bi13Pt3I7 in das dreidimensionale Metall Bi12Pt3I5. Die topochemische Reaktion wird durch eine Reaktionstemperatur von 45 °C limitiert: Bei erhöhter Reaktionstemperatur bis 70 °C tritt eine Umstrukturierung unter weiterem Iod- und Bismutausbau auf, und die metastabile, binäre Phase Bi2Pt(hP9) wird aufgebaut. Die dichte Kristallstruktur des erstmals dargestellten Bismutsubchlorids Bi12Rh3Cl2 baut sich aus einem intermetallischen [Bi4Rh]-Netzwerk auf, in dessen Kanäle Chloridionen eingeschlossen sind. Im Zuge der Niedertemperaturreaktion mit nBuLi erfolgt ein unerwarteter quantitativer Austausch der Chloridionen gegen Bismutatome, der die Kristalle des Subchlorids in Kristalle der binären Verbindung Bi14Rh3 überführt. Die kristallchemische Analyse zeigte, dass den [RhBi8/2]-Antiprismen des [Bi4Rh]-Netzwerks die Funktion von Scharnieren zukommt, welche eine Aufweitung des intermetallischen Netzwerks ermöglichen. So entstehen breite Diffusionspfade, und es resultiert ein dreidimensionales Transportsystem für den enormen Massetransport durch den Kristall. Bei der Austauschreaktion werden die zuvor unabhängig voneinander leitenden intermetallischen Stränge kantenverknüpfter [RhBi8/2]-Würfel elektrisch kontaktiert. Die physikalischen Eigenschaften ändern sich dabei maßgeblich: Aus dem eingeschränkten Metall Bi12Rh3Cl2 entsteht der metastabile Supraleiter Bi14Rh3. Mit zunehmender Kenntnis über die Strategien zur postsynthetischen Umwandlung und Modifizierung komplexer Strukturen können diese grundsätzlich dazu beitragen, Materialien mit technologisch relevanten Eigenschaften darzustellen. Insbesondere Phasen, die nur bei hohen Temperaturen thermodynamische Stabilität erlangen oder sogar unter allen Bedingungen metastabil vorliegen, werden durch die geschickte Wahl der Synthesestrategie zugänglich. Möglicherweise werden mit dem wachsenden Wissen zu neuartigen Synthesestrategien die chemischen und physikalischen Eigenschaften eines Materials auf diesem Weg gezielt veränderbar. Insbesondere die herausragenden Stabilitäten der nanoskaligen, intermetallischen Stäbe werfen zudem die Frage auf, ob diese durch die Reaktion mit oberflächenaktiven Reagenzien vereinzelt werden können, um neuartige nanoskalige Leiter herzustellen.
5

Metastabile intermetallische Phasen durch Niedertemperaturtransformationen von Subhalogeniden

Kaiser, Martin 25 November 2014 (has links)
Maßgeschneiderte Eigenschaften von Funktionsmaterialien sind ein fundamentaler Aspekt für die Technologien unserer Gesellschaft und deren Weiterentwicklung. In diesem Zusammenhang bilden die Modifizierung bestehender Synthesestrategien und die Entwicklung neuartiger Synthesewege die grundlegende Voraussetzung für Innovation. Der Zugang zu den benötigten Materialien wird in den bis dato angewandten Synthesemethoden häufig durch die thermodynamische Stabilität einer Verbindung begrenzt. Zielstellung der vorliegenden Arbeit ist es, eine Strategie zur postsynthetischen Umwandlung und Modifizierung bereits vorhandener komplex strukturierter Feststoffe anzuwenden, durch die es gelingt, Zugang zu weiteren Materialien zu erhalten. Als Feststoffprekursoren wurden hierfür verschiedene ternäre und quaternäre, bismutreiche Subhalogenide gewählt, die bei niedrigen Temperaturen bis 70 °C mit dem Reduktionsmittel n-Butyllithium (nBuLi) zur Reaktion gebracht wurden, um diese in topochemischen Reaktionen zu neuen intermetallischen Phasen umzuwandeln. Die Bismutsubiodide Bi12Ni4I3, Bi8Ni8SI2 und Bi28Ni25I5 enthalten intermetallische Stäbe, deren Querschnitte nur vier bis elf Atome umfassen, was effektiven Durchmessern von ca. 0,8 bis 1,2 nm entspricht. Zudem befinden sich Iodidionen in den Kristallstrukturen, die die metallischen Stäbe voneinander separieren. Die reduktiven Behandlungen dieser Feststoffprekursoren führten jeweils zur quantitativen Deinterkalation der Iodidionen und dadurch zur Zusammenlagerung der metallischen Stäbe zu kompakten Stabpackungen. In Pseudomorphosen wurden zum einen Kristalle erhalten, die eine Vielzahl parallel angeordneter Bi3Ni-Faserbündel enthielten, zum anderen bildeten sich die bisher unbekannten, kristallinen Phasen Bi8Ni8S und Bi28Ni25. Während bei den Umwandlungen die strukturellen Charakteristiken der intermetallischen Teilstrukturen der Bismutsubiodide auf die reduzierten Phasen übertragen werden, ändern sich die elektronischen Situationen mit der Variation der Elektronenzahl. Dies lässt sich besonders gut am Beispiel der Umwandlung des Bismutsubiodids Bi28Ni25I5 in die reduzierte Phase Bi28Ni25 verdeutlichen. Die elektronische Struktur ändert sich durch die Reduktion kaum, sodass die zusätzlichen Elektronen im intermetallischen Teil antibindende Zustände füllen. Das intermetallische Bindungssystem verhält sich dabei wie ein strukturell rigides Elektronenreservoir und toleriert die Änderung der Elektronenzahl bei der topochemischen Umwandlung zu Bi28Ni25. Mit der elektronisch ungünstigen Situation geht die Metastabilität der reduzierten intermetallischen Phase einher. Die reduktive Behandlung des Bismutsubiodids Bi13Pt3I7 führte nicht nur zur selektiven topochemischen Deinterkalation von Iodidionen sondern zusätzlich zum Ausbau von Bismutatomen, wodurch die in Bi13Pt3I7 vorhandenen Iodidobismutatschichten in Iodidschichten umgewandelt werden. Die intermetallischen Schichten der Ausgangsverbindung bleiben erhalten und nähern sich an, sodass das bis dato unbekannte Bismutsubiodid Bi12Pt3I5 resultiert. Das topotaktische Fortbestehen der intermetallischen Schichten zeigt sich dabei an intermediär gebildeten Kompositkristallen aus Mutter- und Tochterverbindung. Durch den Abbau der isolierenden Iodidobismutat¬schichten erfolgen die elektronische Kopplung der intermetallischen Schichten und der Übergang des zwei-dimensionalen Metalls Bi13Pt3I7 in das dreidimensionale Metall Bi12Pt3I5. Die topochemische Reaktion wird durch eine Reaktionstemperatur von 45 °C limitiert: Bei erhöhter Reaktionstemperatur bis 70 °C tritt eine Umstrukturierung unter weiterem Iod- und Bismutausbau auf, und die metastabile, binäre Phase Bi2Pt(hP9) wird aufgebaut. Die dichte Kristallstruktur des erstmals dargestellten Bismutsubchlorids Bi12Rh3Cl2 baut sich aus einem intermetallischen [Bi4Rh]-Netzwerk auf, in dessen Kanäle Chloridionen eingeschlossen sind. Im Zuge der Niedertemperaturreaktion mit nBuLi erfolgt ein unerwarteter quantitativer Austausch der Chloridionen gegen Bismutatome, der die Kristalle des Subchlorids in Kristalle der binären Verbindung Bi14Rh3 überführt. Die kristallchemische Analyse zeigte, dass den [RhBi8/2]-Antiprismen des [Bi4Rh]-Netzwerks die Funktion von Scharnieren zukommt, welche eine Aufweitung des intermetallischen Netzwerks ermöglichen. So entstehen breite Diffusionspfade, und es resultiert ein dreidimensionales Transportsystem für den enormen Massetransport durch den Kristall. Bei der Austauschreaktion werden die zuvor unabhängig voneinander leitenden intermetallischen Stränge kantenverknüpfter [RhBi8/2]-Würfel elektrisch kontaktiert. Die physikalischen Eigenschaften ändern sich dabei maßgeblich: Aus dem eingeschränkten Metall Bi12Rh3Cl2 entsteht der metastabile Supraleiter Bi14Rh3. Mit zunehmender Kenntnis über die Strategien zur postsynthetischen Umwandlung und Modifizierung komplexer Strukturen können diese grundsätzlich dazu beitragen, Materialien mit technologisch relevanten Eigenschaften darzustellen. Insbesondere Phasen, die nur bei hohen Temperaturen thermodynamische Stabilität erlangen oder sogar unter allen Bedingungen metastabil vorliegen, werden durch die geschickte Wahl der Synthesestrategie zugänglich. Möglicherweise werden mit dem wachsenden Wissen zu neuartigen Synthesestrategien die chemischen und physikalischen Eigenschaften eines Materials auf diesem Weg gezielt veränderbar. Insbesondere die herausragenden Stabilitäten der nanoskaligen, intermetallischen Stäbe werfen zudem die Frage auf, ob diese durch die Reaktion mit oberflächenaktiven Reagenzien vereinzelt werden können, um neuartige nanoskalige Leiter herzustellen.:1 Motivation und Forschungsstand 2 Experimentelle Daten und Charakterisierungsmethoden 3 Dehalogenierung von Bismutsubhalogeniden mit eindimensionaler intermetallischer Teilstruktur 4 Topochemie an Bismutsubhalogeniden mit zweidimensionaler intermetallischer Teilstruktur und deren Niedertemperaturzersetzung 5 Topochemische Austauschreaktion im dreidimensionalen intermetallischen Netzwerk von Bismutsubhalogeniden 6 Zusammenfassung und Ausblick Quellenverzeichnis Abkürzungsverzeichnis Abbildungsverzeichnis Tabellenverzeichnis Publikationen Anhang Versicherung Erklärung

Page generated in 0.0581 seconds