131 |
Synthetic approaches to taxanesBerry, N. M. January 1987 (has links)
No description available.
|
132 |
Asymmetric synthesis of β- and γ- amino acidsZammit, Charlotte Maria January 2015 (has links)
This thesis is concerned with the development of new synthetic routes for the asymmetric syntheses of a range of β- and γ-amino acids. Chapter 1 introduces the various biological activities displayed by cyclic β-amino acid containing compounds together with their occurrence in pharmaceutical molecules and β-peptides. Some of the most commonly used synthetic strategies for the preparation of carbocyclic β-amino acids are briefly described, with the focus on the formation and functionalisation of a five-membered carbocyclic ring. Chapter 2 describes a full investigation into a highly diastereoselective Ireland-Claisen rearrangement of stereodefined allyl β-amino esters to access enantiopure α-substituted β-amino acid products. The synthetic utility of this methodology is highlighted by its application in the asymmetric syntheses of five previously inaccessible C(5)-substituted 1,2-anti-1,5-syn-transpentacins. Chapter 3 delineates investigations into a highly diastereoselective conjugate additionelimination protocol for the preparation of a cyclic β'-amino-α,β-unsaturated ester. Subsequent chemo- and diastereoselective conjugate addition reactions of Grignard reagents and lithium amides to this substrate enabled the asymmetric syntheses of four C(5)-substituted 1,2-anti-1,5-syn-transpentacins and two five-membered β,β'-diamines. Chapter 4 details the extension of the protocol developed in Chapter 3 for the conjugate addition of Grignard reagents to a range of acyclic γ-(N,N-dibenzylamino)-substituted α,β-unsaturated esters. Elaboration of the β,γ-disubstituted γ-amino ester products culminated in the asymmetric syntheses of six β,γ-disubstituted γ-amino acids. Chapter 5 chronicles the preparation of an azabicyclic α,β-unsaturated ester, following which attempts towards the asymmetric synthesis of various substituted pyrrolizidines using a conjugate addition protocol are subsequently described. Chapter 6 contains full experimental procedures and characterisation data for all compounds synthesised in Chapters 2, 3, 4 and 5.
|
133 |
Synthesis, structural characterization and reactivity of 13- and 14-vertex carboranes. / CUHK electronic theses & dissertations collectionJanuary 2011 (has links)
Zhang, Jian. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2011. / Includes bibliographical references (leaves 263-289). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese.
|
134 |
Synthesis of macrocyclic 1,3-diketones from metacyclophanes and their applications in organic synthesis.January 1994 (has links)
by Siu-leung Ng. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1994. / Includes bibliographical references (leaves 61-62). / Acknowledgments --- p.i / Content --- p.ii / List of Schemes --- p.iii / List of Tables --- p.iv / List of Spectra --- p.v / Abstract --- p.viii / Abbreviations --- p.x / Chapter I. --- Introduction --- p.1 / Chapter II. --- Literature survey / Chapter II.1. --- Ring expansion of cyclic enamines via a [2+2]cycloaddition --- p.4 / Chapter II.2. --- The Ito-Saegusa protocol --- p.6 / Chapter II.3. --- "The Suzuki-Watanabe-Noyori palladium(0)-catalyzed ring opening of cyclic α,β-epoxy ketones" --- p.7 / Chapter III. --- Synthetic plan --- p.9 / Chapter IV. --- Results and discussion / Chapter IV. 1. --- General routes to [n]metacyclophanes (24) and (n+2)- methoxy[n]metacyclophane 35 --- p.15 / Chapter IV.2. --- Birch reduction of 24 and 35 and ozonolvsis of 25 and 36 --- p.17 / Chapter IV.3. --- Synthetic applications / Chapter IV.3.1. --- Synthesis of heterocyclophanes --- p.27 / Chapter IV.3.2. --- Synthesis of exaltone (8) --- p.28 / Chapter V. --- Conclusion --- p.30 / Chapter VI. --- Experimental --- p.31 / Chapter VII. --- References --- p.61 / Chapter VIII. --- 1H and 13C NMR spectra of selected compounds --- p.63
|
135 |
Synthesis of [beta]-ketomacrolides via 1-oxa[n]meta-cyclophanes and a new route to (+-)-patulolide C.January 1994 (has links)
by Fong Sun. / On t.p., "+" appears over "-". / Thesis (M.Phil.)--Chinese University of Hong Kong, 1994. / Includes bibliographical references (leaves 41-43). / Acknowledgements --- p.i / Contents --- p.ii / Abstract --- p.iii / Abbreviations --- p.iv / Chapter I --- Introduction / Chapter I-1 --- General background --- p.1 / Chapter I-2 --- Literature survey --- p.3 / Chapter I-2-1 --- Ley's approach to β-ketomacrolides --- p.3 / Chapter I-2-2 --- Weiler's approach to β-ketomacrolides --- p.4 / Chapter I-2-3 --- Macrocyclic β-ketomacrolides formation through sulfide contraction ´ؤIreland's approach --- p.5 / Chapter II --- Result and Discussion / Chapter II-1 --- General strategy for the synthesis of 1 -oxa[n]metacyclophanes --- p.7 / Chapter II-2 --- l-Oxa[n]metacyclophanes as masked β-ketomacrolides synthons --- p.9 / Chapter II-3 --- Application to the synthesis of natural products --- p.10 / Chapter II-4 --- An alternate approach for the synthesis of (2E)-2-dodecen-l 1-olide´ؤA structural proof --- p.15 / Chapter III --- Conclusion --- p.17 / Chapter IV --- Experimental --- p.18 / Chapter V --- References --- p.41 / Chapter VI --- Spectra --- p.44
|
136 |
Synthesis and electronic properties of oligo[2,7-biphenylenylene-(E)-vinylene]s.January 1995 (has links)
by Raymond Chi-Yuen Kwong. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1995. / Includes bibliographical references (leaves 60-62). / Acknowledgements --- p.i / Abbreviations --- p.ii / Abstract --- p.iii / Chapter 1. --- Introduction --- p.1 / Chapter 2. --- Synthetic Methodology for Arylenevinylenes --- p.12 / Chapter 3. --- Result and Discussion --- p.15 / Chapter 4. --- Conclusion --- p.42 / Chapter 5. --- Experimental --- p.43 / Chapter 6. --- References --- p.60 / Chapter 7. --- Spectra
|
137 |
A new type of chiral bipyridine: synthesis and application in asymmetric catalytic cyclopropanation.January 1999 (has links)
by Wong Hei Lam Harry. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1999. / Includes bibliographical references (leaves 60-67). / Abstract also in Chinese. / Library's copy: Copy 2 imperfect, p. 60-63 missing. / Table of Contents --- p.i / Acknowledgments --- p.iii / Abbreviations --- p.iv / Abstract --- p.v / Abstract (Chinese) --- p.vi / Chapter CHAPTER I --- GENERAL INTRODUCTION / Chapter 1.1.1 --- Different biological activities of enantiomers --- p.1 / Chapter 1.1.2 --- Approach to enantiomerically pure compounds --- p.3 / Chapter 1.1.3 --- Principle of asymmetric synthesis --- p.4 / Chapter 1.1.4 --- Asymmetric catalysis and chiral catalyst --- p.5 / Chapter 1.2.1 --- Asymmetric cyclopropanation: general introduction --- p.6 / Chapter 1.2.2 --- Asymmetric cyclopropanation: initial studies --- p.8 / Chapter 1.2.3 --- Development of c2-symmetric semicorrin and its derivatives --- p.10 / Chapter 1.2.4 --- Bisoxazolines --- p.12 / Chapter 1.2.5 --- Tridentate N donor ligands --- p.13 / Chapter 1.2.6 --- "2,2'-Bipyridines" --- p.14 / Chapter 1.2.7 --- Chiral metalloporphyrin catalyst --- p.15 / Chapter 1.2.8 --- Intramolecular asymmetric cyclopropanation --- p.16 / Chapter CHAPTER II --- DESIGN AND SYNTHESIS OF CHIRAL LIGANDS / Chapter 2.1 --- Development of atropisomeric biaryls --- p.19 / Chapter 2.2 --- "Chiral 2,2'-bipyridine ligands" --- p.19 / Chapter 2.3 --- Design of chiral ligands --- p.22 / Chapter 2.4 --- Synthesis of target ligands: synthetic strategy --- p.22 / Chapter 2.5 --- Attempted synthesis of target ligands via cross-coupling reaction --- p.22
|
138 |
Synthesis, structural characterization and reactivity of twelve-, thirteen-, and fourteen-vertex carboranes. / CUHK electronic theses & dissertations collectionJanuary 2013 (has links)
Zheng, Fangrui. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2013. / Includes bibliographical references (leaves 181-197). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese.
|
139 |
Part I, base-promoted aryl-bromine bond cleavage by cobalt(ii) porphyrins. / Base-promoted aryl-bromine bond cleavage by cobalt(ii) porphyrins / Part II, catalytic hydrodehalogenation of aryl bromides by cobalt(ii) porphyrin in alkaline conditions / Catalytic hydrodehalogenation of aryl bromides by cobalt(ii) porphyrin in alkaline conditionsJanuary 2013 (has links)
本論文主要研究了鹼性添加劑促進二價鈷卟啉絡合物(Co{U+1D35}{U+1D35}(por))在苯溶劑中與溴代苯及其衍生物(ArX)的反應及鹼性條件下,該絡合物催化溴代苯及其衍生物的脫鹵反應。 / 第一部分主要介紹了在KOH和{U+1D57}BuOH存在下,Co{U+1D35}{U+1D35}(por)斷裂碳-溴鍵(Ar-Br)形成各種三價鈷卟啉芳基絡合物(Co{U+1D35}{U+1D35}{U+1D35}(por)Ar)(eq. 1)。 / 機理研究顯示,Co{U+1D35}{U+1D35}(por)首先從ArBr中得到Br·形成芳基自由基(Ar·)及Co{U+1D35}{U+1D35}{U+1D35}(por)Br (Scheme 1, i). Ar 與另一個Co{U+1D35}{U+1D35}(por)反應得到Co{U+1D35}{U+1D35}{U+1D35}(por)Ar (Scheme 1, ii)。在鹼性條件中,Co{U+1D35}{U+1D35}{U+1D35}(por)Br 最終形成CoII(por)從而繼續反應 (Scheme 1, iii-iv)。 / 第二部份主要介紹了在200 ºC時, 鹼性條件下Co{U+1D35}{U+1D35}(por)催化鹵代苯及其衍生物脫鹵形成對應芳烴的反應 (eq. 2)。 該反應在四氫呋喃(THF)及異丙醇 ({U+2071}PrOH) 中都可以進行。 / 機理研究顯示, Co{U+1D35}{U+1D35}(ttp) 首先與ArBr反應得到Ar· 和Co{U+1D35}{U+1D35}{U+1D35}(ttp)Br (Scheme 2, i)。 Ar 從溶劑(THF 或者 {U+2071}PrOH)得到一個氫原子從而形成芳烴 (ArH) (Scheme 2, ii)。 Ar 也可以與另一個Co{U+1D35}{U+1D35}(ttp) 反應得到Co{U+1D35}{U+1D35}{U+1D35}(ttp)Ar。 在鹼性條件下, Co{U+1D35}{U+1D35}{U+1D35}(ttp)Ar水解形成ArH 和 Co{U+1D35}{U+1D35}{U+1D35}(ttp)OH (Scheme 2, iii)。 Co{U+1D35}{U+1D35}{U+1D35}(ttp)Br 與KOH進行取代反應得到Co{U+1D35}{U+1D35}{U+1D35}(ttp)OH, 并最終形成催化劑Co{U+1D35}{U+1D35}(ttp) (Scheme 1, iii-iv)。所以, 溶劑 (THF 或者 {U+2071}PrOH)及H₂O 都可以作為Co{U+1D35}{U+1D35}(ttp) 催化鹵代苯脫鹵形成芳烴的氫的來源。 / This thesis focuses on (1) the base-promoted aryl bromine bond (Ar-Br) cleavages by cobalt(II) porphyrins and (2) catalytic hydrodehalogenation of aryl bromides by cobalt(II) porphyrin in alkaline conditions. / Part I describes the aryl bromine bond cleavage with cobalt(II) porphyrin (Co{U+1D35}{U+1D35}(por)) in the presence of KOH and {U+1D57}BuOH in benzene at 150ºC to give cobalt(III) porphyrin aryls (Co{U+1D35}{U+1D35}{U+1D35}(por)Ar) (eq. 1). / [With images] / Mechanistic studies suggest that CoII(por) first abstracts the bromine atom from the aryl bromide to form aryl radical (Ar) and Co{U+1D35}{U+1D35}{U+1D35}(por)Br (Scheme 1, i). Ar· further reacts with Co{U+1D35}{U+1D35}(por) to generate Co{U+1D35}{U+1D35}{U+1D35}(por)Ar (Scheme 1, ii). Co{U+1D35}{U+1D35}{U+1D35}(por)Br undergoes ligand substitution with KOH to form Co{U+1D35}{U+1D35}{U+1D35}(por)OH, which quickly gives Co{U+1D35}{U+1D35}(por) and H₂O₂ (Scheme 1, iii). H₂O₂ undergoes base-promoted decomposition to form H₂O and O₂ (Scheme 1, iv). / [With images] / Scheme 1 Reaction Mechanism of Base-promoted Ar-Br Cleavage with Co{U+1D35}{U+1D35}(por) / Part II describes the catalytic hydrodehalogenation of aryl bromides by Co{U+1D35}{U+1D35}(ttp) at 200 ºC in alkaline conditions to generate arenes (eq. 2). The reaction can occur in both THF and {U+2071}PrOH. / [With images] / Mechanistic studies suggest that Co{U+1D35}{U+1D35}(ttp) also first abstracts the bromine atom from the aryl bromide in the presence of KOH to form Ar· and Co{U+1D35}{U+1D35}{U+1D35}(ttp)Br (Scheme 2, i). Ar· can abstract a hydrogen atom from the solvent (THF or {U+2071}PrOH) to form arenes (Scheme 2, ii). Ar also could be trapped by Co{U+1D35}{U+1D35}(ttp) to give Co{U+1D35}{U+1D35}{U+1D35}(ttp)Ar, which undergoes hydrolysis in the presence of OH⁻ to the arene (ArH) and Co{U+1D35}{U+1D35}{U+1D35}(ttp)OH (Scheme 2, iii). Co{U+1D35}{U+1D35}{U+1D35}(ttp)Br gives Co{U+1D35}{U+1D35}{U+1D35}(ttp)OH by ligand substitution with KOH and Co{U+1D35}{U+1D35}{U+1D35}(ttp)OH regenerates the catalyst Co{U+1D35}{U+1D35}(ttp) (Scheme 1, iii-iv). The solvent (THF or {U+2071}PrOH) and H₂O are the hydrogen sources for the catalytic dehalogenation of aryl bromides by Co{U+1D35}{U+1D35}(ttp). / Scheme 2 Mechanism of Catalytic Dehalogentaion of ArBr by CoII(ttp) in Alkaline Media / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Liu, Chunran. / "October 2012." / Thesis (M.Phil.)--Chinese University of Hong Kong, 2013. / Includes bibliographical references (leaves ). / Abstracts also in Chinese. / Chapter Table of Contents --- p.i / Chapter Acknowledgements --- p.iv / Chapter Abbreviations --- p.v / Chapter Abstract --- p.vi / Chapter Part I --- The Base-promoted Aryl Bromine Bond Cleavage of Aryl Bromides by Cobalt(II) Porphyrins / Chapter Chapter 1 --- General Introduction --- p.1 / Chapter 1.1 --- Introduction to Porphyrins and Group 9 metalloporphyrins --- p.1 / Chapter 1.1.1 --- Porphyrin Ligand --- p.1 / Chapter 1.1.2 --- Group 9 metalloporphyrins --- p.2 / Chapter 1.1.3 --- Chemistry of Group 9 Metalloporphyrin --- p.3 / Chapter 1.1.3.1 --- Chemsitry of M{U+1D35}(por) --- p.3 / Chapter 1.1.3.2 --- Chemsitry of M{U+1D35}{U+1D35}(por) --- p.4 / Chapter 1.1.3.3 --- Chemsitry of M{U+1D35}{U+1D35}{U+1D35}{U+1D35}(por) --- p.4 / Chapter 1.1.3.4 --- Chemsitry of M{U+1D35}{U+1D35}{U+1D35}{U+1D35}(por)OH --- p.6 / Chapter 1.2 --- Physical Properties of Aryl Halides --- p.9 / Chapter 1.3 --- Synthesis of Metalloporphyrin Aryl --- p.10 / Chapter 1.4 --- Modes of Reactivity of Aryl Carbon-Halogen Bond Cleavage by Transition Metal Complexes --- p.11 / Chapter 1.4.1 --- Oxidative Addition (OA) --- p.11 / Chapter 1.4.2 --- Nucleophilic Aromatic Substitution (SNA) --- p.14 / Chapter 1.4.3 --- Halogen Atom Transfer (HXA) --- p.14 / Chapter 1.4.4 --- Radical ipso-Substitution --- p.15 / Chapter 1.5 --- Scope of Part I --- p.16 / Chapter Chapter 2 --- Base-promoted Aryl Bromine Bond Cleavage of Aryl Bromides by Cobalt(II) Porphyrins / Chapter 2.1 --- Introduction --- p.17 / Chapter 2.2 --- Objectives of the Work --- p.18 / Chapter 2.3 --- Preparation of Starting Materials --- p.18 / Chapter 2.3.1 --- Synthesis of Porphyrin --- p.18 / Chapter 2.3.2 --- Synthesis of Cobalt(II) Porphyrin --- p.18 / Chapter 2.3.3 --- Synthesis of Co{U+1D35}{U+1D35}{U+1D35}(ttp)Br --- p.19 / Chapter 2.4 --- Discovery of Ph-Br Bond Cleavage by Co{U+1D35}{U+1D35}(ttp) with KOH --- p.19 / Chapter 2.5 --- Optimization of Reaction Conditions --- p.20 / Chapter 2.5.1 --- {U+1D57}BuOH Effect --- p.20 / Chapter 2.5.2 --- Solvent Effect --- p.21 / Chapter 2.5.3 --- Temperature Effect --- p.21 / Chapter 2.5.4 --- Base Loading Effect --- p.22 / Chapter 2.6 --- Summary of Optimization of the Base-promoted Ph-Br Bond Cleavage by Co{U+1D35}{U+1D35}(ttp) --- p.22 / Chapter 2.7 --- Porphyrin Ligand Effect --- p.23 / Chapter 2.8 --- Substrate Scope of Aryl Bromides --- p.24 / Chapter 2.9 --- Mechanistic Studies --- p.25 / Chapter 2.9.1 --- Possible Pathways of Ar-Br Bond Cleavage --- p.25 / Chapter 2.9.1.1 --- Oxidative Addition (OA) --- p.26 / Chapter 2.9.1.2 --- Nucleophilic Aromatic Substitution (SNA) --- p.27 / Chapter 2.9.1.3 --- Radical ipso-Substitution --- p.28 / Chapter 2.9.1.4 --- Halogen Atom Transfer (HXA) --- p.28 / Chapter 2.9.2 --- Electronic Effect of 4-Substituted ArBr by Hammett Plot --- p.29 / Chapter 2.9.3 --- Proposed Mechanism --- p.32 / Chapter 2.9.4 --- Evidence for Halogen Atom Transfer --- p.33 / Chapter 2.10 --- Conclusion --- p.35 / Chapter Chapter 3 --- Experimental Section --- p.36 / Reference --- p.53 / Chapter Part II --- Catalytic Hydrodehalogenation of Aryl Bromides by Cobalt(II) Porphyrin in Alkaline Conditions / Chapter Chapter 4 --- General Introduction --- p.58 / Chapter 4.1 --- Introduction --- p.58 / Chapter 4.1.1 --- Properties of Halogenated Aromatic Compounds --- p.58 / Chapter 4.1.2 --- Reactivity of Aryl Carbon-Halogen Bond --- p.59 / Chapter 4.2 --- Hydrodehalogenation of Aryl Halides by Transiton Metal Complexes --- p.59 / Chapter 4.2.1 --- Molecular Hydrogen (H₂) --- p.60 / Chapter 4.2.2 --- Alcohols and Metal Alkoxides --- p.61 / Chapter 4.2.3 --- Dimethyformamide (DMF) --- p.64 / Chapter 4.2.4 --- Hydrazine (NH₂-NH₂) --- p.65 / Chapter 4.2.5 --- Metal Hydrides --- p.65 / Chapter 4.2.6 --- Alkyl Grignard Reagents --- p.67 / Chapter 4.2.7 --- Formic Acid and Its Salts --- p.67 / Chapter 4.3 --- Common Reducing Agents --- p.69 / Chapter 4.3 --- Scope of Part II --- p.69 / Chapter Chapter 5 --- Catalytic Hydrodehalogenation of Aryl Bromides by Cobalt(II) Porphyrin in Alkaline Conditions / Chapter 5.1 --- Introduction --- p.70 / Chapter 5.2 --- Objectives of the Work --- p.71 / Chapter 5.3 --- Optimization of Reaction Conditions --- p.71 / Chapter 5.3.1 --- Solvent Effect --- p.71 / Chapter 5.3.2 --- Temperature Effect --- p.72 / Chapter 5.3.3 --- Base Loading Effect --- p.73 / Chapter 5.3.4 --- Porphyrin Loading Effect --- p.73 / Chapter 5.3.5 --- Atmosphere Effect --- p.74 / Chapter 5.4 --- Summary of Optimization of Hydrodehalogention of Aryl Bromides by Co{U+1D35}{U+1D35}(ttp) --- p.74 / Chapter 5.5 --- Substrate Scope of Aryl Bromides --- p.75 / Chapter 5.5.1 --- THF as the Solvent --- p.75 / Chapter 5.5.2 --- {U+2071}PrOH as the Solvent --- p.76 / Chapter 5.6 --- Catalytic Reactivity of Co{U+1D35}{U+1D35}(ttp) as the Catalyst --- p.77 / Chapter 5.7 --- Mechanistic Studies --- p.78 / Chapter 5.7.1 --- Proposed Mechanism of Hydrodehalogenation of Aryl Bromides by Co{U+1D35}{U+1D35}(ttp) --- p.78 / Chapter 5.7.2 --- Hydrogen Source Investigation --- p.80 / Chapter 5.8 --- Conclusion --- p.83 / Chapter Chapter 6 --- Experimental Section --- p.84 / Reference --- p.92 / Chapter Appendix --- Appendix I --- p.101 / Appendix II --- p.112 / Appendix III --- p.118
|
140 |
Synthesis, structural characterization and reactivity of ruthenium complexes incorporating linked cyclopentadienyl-carboranyl ligands. / CUHK electronic theses & dissertations collectionJanuary 2006 (has links)
A new class of ruthenium-COD complexes containing carbon-bridged carboranyl-cyclopentadienyl (-indenyl or -fluorenyl) ligands was synthesized. These complexes showed a different reactivity in COD displacement reactions in comparison with the classical LRuCl(COD) (L = Cp, indenyl) complexes presumably due to the presence of sterically bulky and constrained organic-inorganic hybrid ligands. However, the COD ligands in these complexes can be replaced by bidentate tertiary phosphines, 2,2'-bipyridine, mono-phosphites with small cone angles, primary amines or N-heterocyclic carbene to give the corresponding COD displacement complexes. The ruthenium-amine complexes are much more labile than the ruthenium-COD ones. The amine ligands can be substituted by CH3CN to afford more active ruthenium-acetonitrile complex. / Reactions of dilithium salt of linked cyclopentadienyl-carboranyl ligands with 1 equiv of RuCl2(PPh3)3 in THF afforded the corresponding doubly-linked cyclopentadienyl-carboranyl ruthenium(II) hydride complexes. Such intramolecular coupling of a cyclopentadienyl with an o-carboranyl unit is driven by steric factors. Both carboranyl and phosphines with large cone angles are essential for such coupling reactions. The doubly-linked cyclopentadienyl-carboranyl compound was released from the corresponding ruthenium hydride complex by treatment with excess HBF 4·OEt2, followed by hydrolysis. This ligand is not accessible by any other known methods. / Reactions of the ruthenium-acetonitrile complex with SiMe3 substituted alkynes afforded mononuclear bis(vinylidene)metal or vinylvinylidenemetal, respectively, indicating that sterically demanding ancillary ligand and bulky alkynes are both important components to stabilize the above complexes. Treatment of the ruthenium-acetonitrile complex with internal alkynes afforded eta 4-Ru cyclobutadiene or ruthenacyclopentatriene complexes, respectively. Interestingly, interaction of ruthenium-acetonitrile complex with terminal aromatic alkynes gave ruthenium tricyclic complexes involving coupling reactions between Cp and alkynes. The possible reaction mechanism was proposed with the help of the DFT calculations. / Reactions of the ruthenium-amine complex with alkynes gave ruthenium aminocarbene or enamine complexes depending on the electronic properties of alkynes. Electron-rich alkynes gave aminocarbene complexes, whereas electron-deficient alkynes afforded enamine ones. The [eta5:sigma-Me 2C(C5H4)(C2B10H10)]Ru fragment remained intact during the reactions, which may play a role in these controlled reactions. / Sun Yi. / "May 2006." / Adviser: Zuowei Xie. / Source: Dissertation Abstracts International, Volume: 67-11, Section: B, page: 6398. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2006. / Includes bibliographical references (p. 157-177). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstracts in English and Chinese. / School code: 1307.
|
Page generated in 0.0416 seconds