• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Enhancing the Accuracy of Synthetic File System Benchmarks

Farhat, Salam 01 January 2017 (has links)
File system benchmarking plays an essential part in assessing the file system’s performance. It is especially difficult to measure and study the file system’s performance as it deals with several layers of hardware and software. Furthermore, different systems have different workload characteristics so while a file system may be optimized based on one given workload it might not perform optimally based on other types of workloads. Thus, it is imperative that the file system under study be examined with a workload equivalent to its production workload to ensure that it is optimized according to its usage. The most widely used benchmarking method is synthetic benchmarking due to its ease of use and flexibility. The flexibility of synthetic benchmarks allows system designers to produce a variety of different workloads that will provide insight on how the file system will perform under slightly different conditions. The downside of synthetic workloads is that they produce generic workloads that do not have the same characteristics as production workloads. For instance, synthetic benchmarks do not take into consideration the effects of the cache that can greatly impact the performance of the underlying file system. In addition, they do not model the variation in a given workload. This can lead to file systems not optimally designed for their usage. This work enhanced synthetic workload generation methods by taking into consideration how the file system operations are satisfied by the lower level function calls. In addition, this work modeled the variations of the workload’s footprint when present. The first step in the methodology was to run a given workload and trace it by a tool called tracefs. The collected traces contained data on the file system operations and the lower level function calls that satisfied these operations. Then the trace was divided into chunks sufficiently small enough to consider the workload characteristics of that chunk to be uniform. Then the configuration file that modeled each chunk was generated and supplied to a synthetic workload generator tool that was created by this work called FileRunner. The workload definition for each chunk allowed FileRunner to generate a synthetic workload that produced the same workload footprint as the corresponding segment in the original workload. In other words, the synthetic workload would exercise the lower level function calls in the same way as the original workload. Furthermore, FileRunner generated a synthetic workload for each specified segment in the order that they appeared in the trace that would result in a in a final workload mimicking the variation present in the original workload. The results indicated that the methodology can create a workload with a throughput within 10% difference and with operation latencies, with the exception of the create latencies, to be within the allowable 10% difference and in some cases within the 15% maximum allowable difference. The work was able to accurately model the I/O footprint. In some cases the difference was negligible and in the worst case it was at 2.49% difference.
2

Automatic generation of synthetic workloads for multicore systems

Ganesan, Karthik 11 July 2012 (has links)
When designing a computer system, benchmark programs are used with cycle accurate performance/power simulators and HDL level simulators to evaluate novel architectural enhancements, perform design space exploration, understand the worst-case power characteristics of various designs and find performance bottlenecks. This research effort is directed towards automatically generating synthetic benchmarks to tackle three design challenges: 1) For most of the simulation related purposes, full runs of modern real world parallel applications like the PARSEC, SPLASH suites cannot be used as they take machine weeks of time on cycle accurate and HDL level simulators incurring a prohibitively large time cost 2) The second design challenge is that, some of these real world applications are intellectual property and cannot be shared with processor vendors for design studies 3) The most significant problem in the design stage is the complexity involved in fixing the maximum power consumption of a multicore design, called the Thermal Design Power (TDP). In an effort towards fixing this maximum power consumption of a system at the most optimal point, designers are used to hand-crafting possible code snippets called power viruses. But, this process of trying to manually write such maximum power consuming code snippets is very tedious. All of these aforementioned challenges has lead to the resurrection of synthetic benchmarks in the recent past, serving as a promising solution to all the challenges. During the design stage of a multicore system, availability of a framework to automatically generate system-level synthetic benchmarks for multicore systems will greatly simplify the design process and result in more confident design decisions. The key idea behind such an adaptable benchmark synthesis framework is to identify the key characteristics of real world parallel applications that affect the performance and power consumption of a real program and create synthetic executable programs by varying the values for these characteristics. Firstly, with such a framework, one can generate miniaturized synthetic clones for large target (current and futuristic) parallel applications enabling an architect to use them with slow low-level simulation models (e.g., RTL models in VHDL/Verilog) and helps in tailoring designs to the targeted applications. These synthetic benchmark clones can be distributed to architects and designers even if the original applications are intellectual property, when they are not publicly available. Lastly, such a framework can be used to automatically create maximum power consuming code snippets to be able to help in fixing the TDP, heat sinks, cooling system and other power related features of the system. The workload cloning framework built using the proposed synthetic benchmark generation methodology is evaluated to show its superiority over the existing cloning methodologies for single-core systems by generating miniaturized clones for CPU2006 and ImplantBench workloads with only an average error of 2.9% in performance for up to five orders of magnitude of simulation speedup. The correlation coefficient predicting the sensitivity to design changes is 0.95 and 0.98 for performance and power consumption. The proposed framework is evaluated by cloning parallel applications implemented based on p-threads and OpenMP in the PARSEC benchmark suite. The average error in predicting performance is 4.87% and that of power consumption is 2.73%. The correlation coefficient predicting the sensitivity to design changes is 0.92 for performance. The efficacy of the proposed synthetic benchmark generation framework for power virus generation is evaluation on SPARC, Alpha and x86 ISAs using full system simulators and also using real hardware. The results show that the power viruses generated for single-core systems consume 14-41% more power compared to MPrime on SPARC ISA. Similarly, the power viruses generated for multicore systems consume 45-98%, 40-89% and 41-56% more power than PARSEC workloads, running multiple copies of MPrime and multithreaded SPECjbb respectively. / text

Page generated in 0.0703 seconds