1 |
Modeling and parameter estimation of cardiopulmonary dynamics /Choi, Younhee. January 2005 (has links)
Thesis (Ph.D.)--University of Rhode Island, 2005. / Includes bibliographical references (leaves 90-95).
|
2 |
GPS determination of diurnal and semidiurnal variations in earth rotation parameters and the geocenter /Nam, Young-sun, January 1999 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 1999. / Vita. Includes bibliographical references (leaves 135-153). Available also in a digital version from Dissertation Abstracts.
|
3 |
Design and implementation of a special protection scheme to prevent voltage collapse2012 March 1900 (has links)
The trend of making more profits for the owners, deregulation of the utility market and need for obtaining permission from regulatory agencies have forced electric power utilities to operate their systems close to the security limits of their generation, transmission and distribution systems. The result is that power systems are now exposed to substantial risks of experiencing voltage collapse. This phenomenon is complex and is localized in nature but has widespread adverse consequences. The worst scenario of voltage collapse is partial or total outage of the power system resulting in loss of industrial productivity of the country and major financial loss to the utility. On-line monitoring of voltage stability is, therefore becoming a vital practice that is being increasingly adopted by electric power utilities.
The phenomenon of voltage collapse has been studied for quite some time, and techniques for identifying voltage collapse situations have been suggested. Most suggested techniques examine steady-state and dynamic behaviors of the power system in off-line modes. Very few on-line protection and control schemes have been proposed and implemented. In this thesis, a new technique for preventing voltage collapse is presented.
The developed technique uses subset of measurements from local bus as well as neighbouring buses and considers not only the present state of the system but also future load and topology changes in the system. The technique improves the robustness of the local-based methods and can be implemented in on-line as well as off-line modes.
The technique monitors voltages and currents and calculates from those measurements time to voltage collapse. As the system approaches voltage collapse, control actions are implemented to relieve the system to prevent major disturbances.
The developed technique was tested by simulating a variety of operating states and generating voltage collapse situations on the IEEE 30-Bus test system. Some results from the simulation studies are reported in this thesis. The results obtained from the simulations indicates that the proposed technique is able to estimate the time to voltage collapse and can implement control actions as well as alert operators.
|
4 |
Blind Received Signal Strength Difference Based Source Localization with System Parameter Error and Sensor Position UncertaintyLohrasbipeydeh, Hannan 27 August 2014 (has links)
Passive source localization in wireless sensor networks (WSNs) is an important field of research with numerous applications in signal processing and wireless communications.
One purpose of a WSN is to determine the position of a signal emitted
from a source. This position is estimated based on received noisy measurements from
sensors (anchor nodes) that are distributed over a geographical area. In most cases,
the sensor positions are assumed to be known exactly, which is not always reasonable.
Even if the sensor positions are measured initially, they can change over time.
Due to the sensitivity of source location estimation accuracy with respect to the
a priori sensor position information, the source location estimates obtained can vary
significantly regardless of the localization method used. Therefore, the sensor position
uncertainty should be considered to obtain accurate estimates. Among the many
localization approaches, signal strength based methods have the advantages of low
cost and simple implementation. The received signal energy mainly depends on the
transmitted power and path loss exponent which are often unknown in practical
scenarios.
In this dissertation, three received signal strength difference (RSSD) based methods
are presented to localize a source with unknown transmit power. A nonlinear
RSSD-based model is formulated for systems perturbed by noise. First, an effective
low complexity constrained weighted least squares (CWLS) technique in the presence
of sensor uncertainty is derived to obtain a least squares initial estimate (LSIE) of
the source location. Then, this estimate is improved using a computationally efficient
Newton method. The Cramer-Rao lower bound (CRLB) is derived to determine the
effect of sensor location uncertainties on the source location estimate. Results are
presented which show that the proposed method achieves the CRLB when the signal
to noise ratio (SNR) is sufficiently high.
Least squares (LS) based methods are typically used to obtain the location estimate
that minimizes the data vector error instead of directly minimizing the unknown
parameter estimation error. This can result in poor performance, particularly in noisy
environments, due to bias and variance in the location estimate. Thus, an efficient
two stage estimator is proposed here. First, a minimax optimization problem is developed
to minimize the mean square error (MSE) of the proposed RSSD-based model.
Then semidefinite relaxation is employed to transform this nonconvex and nonlinear
problem into a convex optimization problem. This can be solved e ciently to obtain
the optimal solution of the corresponding semidefinite programming (SDP) problem.
Performance results are presented which con rm the e ciency of the proposed method
which achieves the CRLB.
Finally, an extended total least squares (ETLS) method is developed for blind
localization which considers perturbations in the system parameters as well as the
constraints imposed by the relation between the observation matrix and data vector.
The corresponding nonlinear and nonconvex RSSD-based localization problem is then
transformed to an ETLS problem with fewer constraints. This is transformed to a
convex semidefinite programming (SDP) problem using relaxation. The proposed
ETLS-SDP method is extended to the case with an unknown path loss exponent.
The mean squared error (MSE) and corresponding CRLB are derived as performance
benchmarks. Performance results are presented which show that the RSSD-based
ETLS-SDP method attains the CRLB for a sufficiently large SNR. / Graduate / 0544 / lohrasbi@uvic.ca
|
5 |
Cooperative Object Manipulation with Force Tracking on the da Vinci Research KitGondokaryono, Radian A 10 August 2018 (has links)
The da Vinci Surgical System is one of the most established robot-assisted surgery device commended for its dexterity and ergonomics in minimally invasive surgery. Conversely, it inherits disadvantages which are lack of autonomy and haptic feedback. In order to address these issues, this work proposes an industry-inspired solution to the field of force control in medical robotics. This approach contributes to shared autonomy by developing a controller for cooperative object manipulation with force tracking utilizing available manipulators and force feedback. To achieve simultaneous position and force tracking of the object, master and slave manipulators were assigned then controlled with Cartesian position control and impedance control respectively. Because impedance control requires a model-based feedforward compensation, we identified the lumped base parameters of mass, inertias, and frictions of a three degree-of-freedom double four-bar linkage mechanism with least squares and weighted least squares regression methods. Additionally, semidefinite programming was used to constrain the parameters to a feasible physical solution in standard parameter space. Robust stick-slip static friction compensation was applied where linear Viscous and Coulomb friction was inadequate in modeling the prismatic third joint. The Robot Operating System based controller was tested in RViz to check the cooperative kinematics of up to three manipulators. Additionally, simulation with the dynamic engine Gazebo verified the cooperative controller applying a constant tension force on a massless spring-damper virtual object. With adequate model feedback linearization, the cooperative impedance controller tested on the da Vinci Research Kit yielded stable tension force tracking while simultaneously moving in Cartesian space. The maximum force tracking error was +/- 0.5 N for both a compliant and stiff manipulated object.
|
6 |
Dynamic Responses of a Cam System by Using the Transfer Matrix MethodYen, Chia-tse 27 July 2009 (has links)
The validity of transfer matrix method (TMM) employed in a nonlinear gear cam system is studied in this thesis. The nonlinear dynamic responses of each part in the nonlinear system are estimated by applying the 4th-order Runge-Kutta method. A high speed gear cam drive automatic die cutter was analyzed in this study. A 25 horsepower AC induction motor is designed to drive the system. To complete the cutting work, a sequential process of the harmonic motion and the intermittent motion are generated by the elbow mechanism and the gear cam mechanism, respectively. A simplified branched multi-rotor system is modeled to approximate the motion of the system. The variation of the dynamic parameters of the system in a loading cycle is estimated under a branched torsional system. The Holzer¡¦s transfer matrix method is used to study the variation of the system parameters during the intermittent movement. Moreover, the effect of time-varied speed introduced from the torque variation of the induction motor and gear cam mechanism on the nonlinear dynamic response of the system has also been investigated. To explore the dynamic effect of different cam designs, three different cam motion curves and seven operating rates have been analyzed in this work. The residual vibration of the last sprocket has also been discussed. Numerical results indicate that the proposed model is available to simulate the dynamic responses of a nonlinear gear cam drive system.
|
Page generated in 0.0554 seconds