1 |
Senior administrators’ perceptions of the impact of educational bureaucracy on school efficacyVolk, Andrew 18 September 2014 (has links)
This study explores the question of how educational bureaucracies impact school efficacy, from the perspectives of senior administrators, a group made up of superintendents and assistant superintendents. The literature review defines the terms educational bureaucracy and systems coupling, which provide a theoretical framework for the study and serve as a lens through which the data, anecdotal reports contextualized by real-life experiences, are analyzed and the theme of school efficacy is explored. Understanding the unique perspective of the senior administrator’s role with regards to educational bureaucracy and its impact will provide a basis from which the structure of school systems is explored more deeply, and the ways in which systems coupling and elements of bureaucratic structures might be used as tools to improve school efficacy. The aim of this study is to better understand the specific functions of educational bureaucracies that have a perceived and/or measured effect on school efficacy. Rather than using a uniform measure of school efficacy, which could serve to limit the experiences shared by participants, the secondary aim of this study is to develop possible definitions/conceptualizations of school efficacy based on the anecdotal reports provided by participants, through the application of grounded theory. The findings of this study and the implications for practice will be of interest to those studying the sociological foundations of education and to stakeholders who wish to know more about the functioning of educational bureaucracies at the systemic level, and how they impact school efficacy.
|
2 |
Statistical properties and scaling of the Lyapunov exponents in stochastic systemsZillmer, Rüdiger January 2003 (has links)
Die vorliegende Arbeit umfaßt drei Abhandlungen, welche allgemein mit einer stochastischen Theorie für die Lyapunov-Exponenten befaßt sind. Mit Hilfe dieser Theorie werden universelle Skalengesetze untersucht, die in gekoppelten chaotischen und ungeordneten Systemen auftreten. <br />
<br />
Zunächst werden zwei zeitkontinuierliche stochastische Modelle für schwach gekoppelte chaotische Systeme eingeführt, um die Skalierung der Lyapunov-Exponenten mit der Kopplungsstärke ('coupling sensitivity of chaos') zu untersuchen. Mit Hilfe des Fokker-Planck-Formalismus werden Skalengesetze hergeleitet, die von Ergebnissen numerischer Simulationen bestätigt werden. <br />
<br />
Anschließend wird gezeigt, daß 'coupling sensitivity' im Fall gekoppelter ungeordneter Ketten auftritt, wobei der Effekt sich durch ein singuläres Anwachsen der Lokalisierungslänge äußert. Numerische Ergebnisse für gekoppelte Anderson-Modelle werden bekräftigt durch analytische Resultate für gekoppelte raumkontinuierliche Schrödinger-Gleichungen. Das resultierende Skalengesetz für die Lokalisierungslänge ähnelt der Skalierung der Lyapunov-Exponenten gekoppelter chaotischer Systeme. <br />
<br />
Schließlich wird die Statistik der exponentiellen Wachstumsrate des linearen Oszillators mit parametrischem Rauschen studiert. Es wird gezeigt, daß die Verteilung des zeitabhängigen Lyapunov-Exponenten von der Normalverteilung abweicht. Mittels der verallgemeinerten Lyapunov-Exponenten wird der Parameterbereich bestimmt, in welchem die Abweichungen von der Normalverteilung signifikant sind und Multiskalierung wesentlich wird. / This work incorporates three treatises which are commonly concerned with a stochastic theory of the Lyapunov exponents. With the help of this theory universal scaling laws are investigated which appear in coupled chaotic and disordered systems. <br />
<br />
First, two continuous-time stochastic models for weakly coupled chaotic systems are introduced to study the scaling of the Lyapunov exponents with the coupling strength (coupling sensitivity of chaos). By means of the the Fokker-Planck formalism scaling relations are derived, which are confirmed by results of numerical simulations. <br />
<br />
Next, coupling sensitivity is shown to exist for coupled disordered chains, where it appears as a singular increase of the localization length. Numerical findings for coupled Anderson models are confirmed by analytic results for coupled continuous-space Schrödinger equations. The resulting scaling relation of the localization length resembles the scaling of the Lyapunov exponent of coupled chaotic systems. <br />
<br />
Finally, the statistics of the exponential growth rate of the linear oscillator with parametric noise are studied. It is shown that the distribution of the finite-time Lyapunov exponent deviates from a Gaussian one. By means of the generalized Lyapunov exponents the parameter range is determined where the non-Gaussian part of the distribution is significant and multiscaling becomes essential.
|
Page generated in 0.0905 seconds