1 |
Bit Serial Systolic Architectures for Multiplicative Inversion and Division over GF(2<sup>m</sup>)Daneshbeh, Amir January 2005 (has links)
Systolic architectures are capable of achieving high throughput by maximizing pipelining and by eliminating global data interconnects. Recursive algorithms with regular data flows are suitable for systolization. The computation of multiplicative inversion using algorithms based on EEA (Extended Euclidean Algorithm) are particularly suitable for systolization. Implementations based on EEA present a high degree of parallelism and pipelinability at bit level which can be easily optimized to achieve local data flow and to eliminate the global interconnects which represent most important bottleneck in todays sub-micron design process. The net result is to have high clock rate and performance based on efficient systolic architectures.
This thesis examines high performance but also scalable implementations of multiplicative inversion or field division over Galois fields <i>GF</i>(2<i><sup>m</sup></i>) in the specific case of cryptographic applications where field dimension <i>m</i> may be very large (greater than 400) and either <i>m</i> or defining irreducible polynomial may vary. For this purpose, many inversion schemes with different basis representation are studied and most importantly variants of EEA and binary (Stein's) GCD computation implementations are reviewed. A set of common as well as contrasting characteristics of these variants are discussed. As a result a generalized and optimized variant of EEA is proposed which can compute division, and multiplicative inversion as its subset, with divisor in either <i>polynomial</i> or <i>triangular</i> basis representation. Further results regarding Hankel matrix formation for double-basis inversion is provided. The validity of using the same architecture to compute field division with polynomial or triangular basis representation is proved.
Next, a scalable unidirectional bit serial systolic array implementation of this proposed variant of EEA is implemented. Its complexity measures are defined and these are compared against the best known architectures. It is shown that assuming the requirements specified above, this proposed architecture may achieve a higher clock rate performance w. r. t. other designs while being more flexible, reliable and with minimum number of inter-cell interconnects.
The main contribution at system level architecture is the substitution of all counter or adder/subtractor elements with a simpler distributed and free of carry propagation delays structure. Further a novel restoring mechanism for result sequences of EEA is proposed using a double delay element implementation.
Finally, using this systolic architecture a CMD (Combined Multiplier Divider) datapath is designed which is used as the core of a novel systolic elliptic curve processor. This EC processor uses affine coordinates to compute scalar point multiplication which results in having a very small control unit and negligible with respect to the datapath for all practical values of <i>m</i>. The throughput of this EC based on this bit serial systolic architecture is comparable with designs many times larger than itself reported previously.
|
2 |
Bit Serial Systolic Architectures for Multiplicative Inversion and Division over GF(2<sup>m</sup>)Daneshbeh, Amir January 2005 (has links)
Systolic architectures are capable of achieving high throughput by maximizing pipelining and by eliminating global data interconnects. Recursive algorithms with regular data flows are suitable for systolization. The computation of multiplicative inversion using algorithms based on EEA (Extended Euclidean Algorithm) are particularly suitable for systolization. Implementations based on EEA present a high degree of parallelism and pipelinability at bit level which can be easily optimized to achieve local data flow and to eliminate the global interconnects which represent most important bottleneck in todays sub-micron design process. The net result is to have high clock rate and performance based on efficient systolic architectures.
This thesis examines high performance but also scalable implementations of multiplicative inversion or field division over Galois fields <i>GF</i>(2<i><sup>m</sup></i>) in the specific case of cryptographic applications where field dimension <i>m</i> may be very large (greater than 400) and either <i>m</i> or defining irreducible polynomial may vary. For this purpose, many inversion schemes with different basis representation are studied and most importantly variants of EEA and binary (Stein's) GCD computation implementations are reviewed. A set of common as well as contrasting characteristics of these variants are discussed. As a result a generalized and optimized variant of EEA is proposed which can compute division, and multiplicative inversion as its subset, with divisor in either <i>polynomial</i> or <i>triangular</i> basis representation. Further results regarding Hankel matrix formation for double-basis inversion is provided. The validity of using the same architecture to compute field division with polynomial or triangular basis representation is proved.
Next, a scalable unidirectional bit serial systolic array implementation of this proposed variant of EEA is implemented. Its complexity measures are defined and these are compared against the best known architectures. It is shown that assuming the requirements specified above, this proposed architecture may achieve a higher clock rate performance w. r. t. other designs while being more flexible, reliable and with minimum number of inter-cell interconnects.
The main contribution at system level architecture is the substitution of all counter or adder/subtractor elements with a simpler distributed and free of carry propagation delays structure. Further a novel restoring mechanism for result sequences of EEA is proposed using a double delay element implementation.
Finally, using this systolic architecture a CMD (Combined Multiplier Divider) datapath is designed which is used as the core of a novel systolic elliptic curve processor. This EC processor uses affine coordinates to compute scalar point multiplication which results in having a very small control unit and negligible with respect to the datapath for all practical values of <i>m</i>. The throughput of this EC based on this bit serial systolic architecture is comparable with designs many times larger than itself reported previously.
|
3 |
FPGA realization of low register systolic all one-polynomial multipliers over GF (2m) and their applications in trinomial multipliersChen, Pingxiuqi 08 June 2016 (has links)
No description available.
|
4 |
FPGA Realization of Low Register Systolic Multipliers over GF(2^m)Shao, Qiliang January 2016 (has links)
No description available.
|
Page generated in 0.1031 seconds