• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Transition of Quadcopter Box-wing UAV between Cruise and VTOL Modes

Gupta, Gaurang 02 November 2018 (has links)
No description available.
2

Development of a Miniature VTOL Tail-Sitter Unmanned Aerial Vehicle

Hogge, Jeffrey V. 22 April 2008 (has links) (PDF)
The design, analysis, construction and flight testing of a miniature Vertical Take-Off and Landing (VTOL) tail-sitter Unmanned Aerial Vehicle (UAV) prototype is presented in detail. Classic aircraft design methods were combined with numerical analysis to estimate the aircraft performance and flight characteristics. The numerical analysis employed a propeller blade-element theory coupled with momentum equations to predict the influence of a propeller slipstream on the freestream flow field, then the aircraft was analyzed using 3-D vortex lifting-line theory to model finite wings immersed in the flow field. Four prototypes were designed, built, and tested and the evolution of these prototypes is presented. The final prototype design is discussed in detail. A method for sizing control surfaces for a tail-sitter was defined. The final prototype successfully demonstrated controllability both in horizontal flight and vertical flight. Significant contributions included the development of a control system that was effective in hover as well as descending vertical flight, and the development of a strong but light weight airframe. The aircraft had a payload weight fraction of 14.5% and a maximum dimension of one meter, making it the smallest tail-sitter UAV to carry a useful payload. This project is expected to provide a knowledge base for the future design of small electric VTOL tail-sitter aircraft and to provide an airframe for future use in tail-sitter research.
3

Fabrication, Modeling and Control of a Spherical Tail-Sitter UAV

January 2018 (has links)
abstract: In the past decade, real-world applications of Vertical Take-Off and Landing (VTOL) Unmanned Aerial Vehicles (UAV) have increased significantly. There has been growing interest in one of these types of UAVs, called a tail-sitter UAV, due to its VTOL and cruise capabilities. This thesis presents the fabrication of a spherical tail-sitter UAV and derives a nonlinear mathematical model of its dynamics. The singularity in the attitude kinematics of the vehicle is avoided using Modified Rodrigues Parameters (MRP). The model parameters of the fabricated vehicle are calculated using the bifilar pendulum method, a motor stand, and ANSYS simulation software. Then the trim conditions at hover are calculated for the nonlinear model, and the rotational dynamics of the model are linearized around the equilibrium state with the calculated trim conditions. Robust controllers are designed to stabilize the UAV in hover using the H2 control and H-infinity control methodologies. For H2 control design, Linear Quadratic Gaussian (LQG) control is used. For the H infinity control design, Linear Matrix Inequalities (LMI) with frequency-dependent weights are derived and solved using the MATLAB toolbox YALMIP. In addition, a nonlinear controller is designed using the Sum-of-Squares (SOS) method to implement large-angle maneuvers for transitions between horizontal flight and vertical flight. Finally, the linear controllers are implemented in the fabricated spherical tail-sitter UAV for experimental validation. The performance trade-offs and the response of the UAV with the linear and nonlinear controllers are discussed in detail. / Dissertation/Thesis / Masters Thesis Aerospace Engineering 2018

Page generated in 0.054 seconds