• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Broad Analysis of Tandemly Arrayed Genes in the Genomes of Human, Mouse, and Rat

Shoja, Valia 20 December 2006 (has links)
Tandemly arrayed genes (TAG) play an important functional and physiological role in the genome. Most previous studies have focused on individual TAG families in a few species, yet a broad characterization of TAGs is not available. We identified all the TAGs in the genomes of human, chimp, mouse, and rat and performed a comprehensive analysis of TAG distribution, TAG sizes, TAG gene orientations and intergenic distances, and TAG gene functions. TAGs account for about 14-17% of all the genomic genes and nearly one third of all the duplicated genes in the four genomes, highlighting the predominant role that tandem duplication plays in gene duplication. For all species, TAG distribution is highly heterogeneous along chromosomes and some chromosomes are enriched with TAG forests while others are enriched with TAG deserts. The majority of TAGs are of size two for all genomes, similar to the previous findings in C. elegans, A. thaliana, and O. sativa, suggesting that it is a rather general phenomenon in eukaryotes. The comparison with the genome patterns shows that TAG members have a significantly higher proportion of parallel gene orientation in all species, corroborating Graham's claim that parallel orientation is the preferred form of orientation in TAGs. Moreover, TAG members with parallel orientation tend to be closer to each other than all neighboring genes with parallel orientation in the genome. The analysis of GO function indicate that genes with receptor or binding activities are significantly over-represented by TAGs. Simulation reveals that random gene rearrangements have little effect on the statistics of TAGs for all genomes. It is noteworthy to mention that gene family sizes are significantly correlated with the extent of tandem duplication, suggesting that tandem duplication is a preferred form of duplication, especially in large families. There has not been any systematic study of TAG genes' expression patterns in the genome. Taking advantage of recent large-scale microarray data, we were able to study expression divergence of some of the TAGs of size two in human and mouse for which the expression data is available and examine the effect of sequence divergence, gene orientation, and physical proximity on the divergence of gene expression patterns. Our results show that there is a weak negative correlation between sequence divergence and expression similarity between the two members of a TAG, and also a weak negative correlation between physical proximity of two genes and their expression similarity. No significant relationship was detected between gene orientation and expression similarity. Moreover, we compared the expression breadth of upstream and downstream duplicate copies and found that downstream duplicate does not show significantly narrower expression breadth. We also compared TAG gene pairs with their neighboring non-TAG pairs for both physical proximity and expression similarity. Our results show that TAG gene pairs do not show any distinct differences in the two aspects from their neighboring gene pairs, suggesting that sufficient divergence has occurred to these duplicated genes during evolution and their original similarity conferred by duplication has decayed to a level that is comparable to their surrounding regions. / Master of Science
2

Evolution of Tandemly Repeated Sequences

Snook, Michael James January 2009 (has links)
Despite being found in all presently sequenced genomes, the evolution of tandemly repeated sequences has only just begun to be understood. We can represent the duplication history of tandemly repeated sequences with duplication trees. Most phylogenetic techniques need to be modified to be used on duplication trees. Due to gene loss, it is not always possible to reconstruct the duplication history of a tandemly repeated sequence. This thesis addresses this problem by providing a polynomial-time locally optimal algorithm to reconstruct the duplication history of a tandemly repeated sequence in the presence of gene loss. Supertree methods cannot be directly applied to duplication trees. A polynomial-time algorithm that takes a forest of ordered phylogenies and looks for a super duplication tree is presented. If such a super duplication tree is found then the algorithm constructs the super duplication tree. However, the algorithm does not always find a super duplication tree when one exists. The SPR topological rearrangement in its current form cannot be used on duplication trees. The necessary modifications are made to an agreement forest so that the SPR operation can be used on duplication trees. This operation is called the duplication rooted subtree prune and regraft operation (DrSPR). The size of the DrSPR neighbourhood is calculated for simple duplication trees and the tree shapes that maximize and minimize this are given.

Page generated in 0.0697 seconds