• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 23
  • Tagged with
  • 27
  • 9
  • 9
  • 9
  • 9
  • 9
  • 9
  • 9
  • 9
  • 9
  • 9
  • 9
  • 9
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

General biology and reproductive fitness of Tasmanian lacewing, Micromus tasmaniae Walker : a thesis presented in partial fulfllment of the requirements for the degree of Master of Science in Plant Protection at the Institute of Natural Resources, Massey University, Palmerston North, New Zealand

Yadav, Anand January 2009 (has links)
Tasmanian lacewing, Micromus tasmaniae Walker, is an important predator of a number of economically important pests such as aphids. This study was conducted to investigate some aspects of general biology and factors affecting the reproductive fitness of this species Emergence of M. tasmaniae peaked 3 h before light off and there was no significant difference in emergence patterns between males and females. Males became sexually mature earlier than females. Mating success significantly increased from the first to the eleventh hour after lights on. Predation, development and oviposition of M. tasmaniae were affected when reared under different photoperiods [i.e. 24:0, 16:8, 12:12, 0:24 h (light:dark)]. Results indicate that no individuals entered diapause at either an immature or adult stage. M. tasmaniae larvae could feed in both the photophase and scotophase and late instar larvae consumed significantly more aphids than early instar larvae. M. tasmaniae reared at 16:8 h developed faster and had lower mortality, heavier adult body weight and higher reproductive output in terms of fecundity and fertility rate. Therefore, mass-rearing programmes are recommended to be carried out at 16:8 h to obtain the higher quality of individuals and faster increase of populations. The larger-the better theory predicts that the reproductive fitness is positively linearly associated with body size or weight. However, the body weight of female M. tasmaniae had no effect on the reproductive fitness in terms of fecundity, fertility, fertility rate, oviposition period and longevity. The male body weight may contribute to the population growth of M. tasmaniae as the average females that mated with average or heavy males had significantly higher fecundity, fertility and fertility rate and longer reproductive period. These results suggest that development of any control method that should selectively mass-produce heavy and average individuals in the laboratory would help increasing M. tasmaniae quality and populations. M. tasmaniae is a polygamous species. Results indicate that female remating either with the same or different males was crucial for maximizing their reproductive success. Males could inseminate up to eight females and father about one thousand offspring during their life span.
22

General biology and reproductive fitness of Tasmanian lacewing, Micromus tasmaniae Walker : a thesis presented in partial fulfllment of the requirements for the degree of Master of Science in Plant Protection at the Institute of Natural Resources, Massey University, Palmerston North, New Zealand

Yadav, Anand January 2009 (has links)
Tasmanian lacewing, Micromus tasmaniae Walker, is an important predator of a number of economically important pests such as aphids. This study was conducted to investigate some aspects of general biology and factors affecting the reproductive fitness of this species Emergence of M. tasmaniae peaked 3 h before light off and there was no significant difference in emergence patterns between males and females. Males became sexually mature earlier than females. Mating success significantly increased from the first to the eleventh hour after lights on. Predation, development and oviposition of M. tasmaniae were affected when reared under different photoperiods [i.e. 24:0, 16:8, 12:12, 0:24 h (light:dark)]. Results indicate that no individuals entered diapause at either an immature or adult stage. M. tasmaniae larvae could feed in both the photophase and scotophase and late instar larvae consumed significantly more aphids than early instar larvae. M. tasmaniae reared at 16:8 h developed faster and had lower mortality, heavier adult body weight and higher reproductive output in terms of fecundity and fertility rate. Therefore, mass-rearing programmes are recommended to be carried out at 16:8 h to obtain the higher quality of individuals and faster increase of populations. The larger-the better theory predicts that the reproductive fitness is positively linearly associated with body size or weight. However, the body weight of female M. tasmaniae had no effect on the reproductive fitness in terms of fecundity, fertility, fertility rate, oviposition period and longevity. The male body weight may contribute to the population growth of M. tasmaniae as the average females that mated with average or heavy males had significantly higher fecundity, fertility and fertility rate and longer reproductive period. These results suggest that development of any control method that should selectively mass-produce heavy and average individuals in the laboratory would help increasing M. tasmaniae quality and populations. M. tasmaniae is a polygamous species. Results indicate that female remating either with the same or different males was crucial for maximizing their reproductive success. Males could inseminate up to eight females and father about one thousand offspring during their life span.
23

General biology and reproductive fitness of Tasmanian lacewing, Micromus tasmaniae Walker : a thesis presented in partial fulfllment of the requirements for the degree of Master of Science in Plant Protection at the Institute of Natural Resources, Massey University, Palmerston North, New Zealand

Yadav, Anand January 2009 (has links)
Tasmanian lacewing, Micromus tasmaniae Walker, is an important predator of a number of economically important pests such as aphids. This study was conducted to investigate some aspects of general biology and factors affecting the reproductive fitness of this species Emergence of M. tasmaniae peaked 3 h before light off and there was no significant difference in emergence patterns between males and females. Males became sexually mature earlier than females. Mating success significantly increased from the first to the eleventh hour after lights on. Predation, development and oviposition of M. tasmaniae were affected when reared under different photoperiods [i.e. 24:0, 16:8, 12:12, 0:24 h (light:dark)]. Results indicate that no individuals entered diapause at either an immature or adult stage. M. tasmaniae larvae could feed in both the photophase and scotophase and late instar larvae consumed significantly more aphids than early instar larvae. M. tasmaniae reared at 16:8 h developed faster and had lower mortality, heavier adult body weight and higher reproductive output in terms of fecundity and fertility rate. Therefore, mass-rearing programmes are recommended to be carried out at 16:8 h to obtain the higher quality of individuals and faster increase of populations. The larger-the better theory predicts that the reproductive fitness is positively linearly associated with body size or weight. However, the body weight of female M. tasmaniae had no effect on the reproductive fitness in terms of fecundity, fertility, fertility rate, oviposition period and longevity. The male body weight may contribute to the population growth of M. tasmaniae as the average females that mated with average or heavy males had significantly higher fecundity, fertility and fertility rate and longer reproductive period. These results suggest that development of any control method that should selectively mass-produce heavy and average individuals in the laboratory would help increasing M. tasmaniae quality and populations. M. tasmaniae is a polygamous species. Results indicate that female remating either with the same or different males was crucial for maximizing their reproductive success. Males could inseminate up to eight females and father about one thousand offspring during their life span.
24

General biology and reproductive fitness of Tasmanian lacewing, Micromus tasmaniae Walker : a thesis presented in partial fulfllment of the requirements for the degree of Master of Science in Plant Protection at the Institute of Natural Resources, Massey University, Palmerston North, New Zealand

Yadav, Anand January 2009 (has links)
Tasmanian lacewing, Micromus tasmaniae Walker, is an important predator of a number of economically important pests such as aphids. This study was conducted to investigate some aspects of general biology and factors affecting the reproductive fitness of this species Emergence of M. tasmaniae peaked 3 h before light off and there was no significant difference in emergence patterns between males and females. Males became sexually mature earlier than females. Mating success significantly increased from the first to the eleventh hour after lights on. Predation, development and oviposition of M. tasmaniae were affected when reared under different photoperiods [i.e. 24:0, 16:8, 12:12, 0:24 h (light:dark)]. Results indicate that no individuals entered diapause at either an immature or adult stage. M. tasmaniae larvae could feed in both the photophase and scotophase and late instar larvae consumed significantly more aphids than early instar larvae. M. tasmaniae reared at 16:8 h developed faster and had lower mortality, heavier adult body weight and higher reproductive output in terms of fecundity and fertility rate. Therefore, mass-rearing programmes are recommended to be carried out at 16:8 h to obtain the higher quality of individuals and faster increase of populations. The larger-the better theory predicts that the reproductive fitness is positively linearly associated with body size or weight. However, the body weight of female M. tasmaniae had no effect on the reproductive fitness in terms of fecundity, fertility, fertility rate, oviposition period and longevity. The male body weight may contribute to the population growth of M. tasmaniae as the average females that mated with average or heavy males had significantly higher fecundity, fertility and fertility rate and longer reproductive period. These results suggest that development of any control method that should selectively mass-produce heavy and average individuals in the laboratory would help increasing M. tasmaniae quality and populations. M. tasmaniae is a polygamous species. Results indicate that female remating either with the same or different males was crucial for maximizing their reproductive success. Males could inseminate up to eight females and father about one thousand offspring during their life span.
25

Understanding the impacts of Devil Facial Tumour Disease in wild Tasmanian devil (Sarcophilus harrisii) populations to inform management decisions

Shelly Lachish Unknown Date (has links)
Infectious diseases are increasingly being recognised as significant threatening processes in conservation biology. Developing strategies to effectively manage infectious diseases in wildlife is, therefore, of the utmost importance to the maintenance of global biodiversity. The effective management of infectious diseases relies on understanding the ecology of the host, the epidemiological characteristics of the pathogen and the impacts of the pathogen on the host population. However, for most wildlife-disease systems this information remains poorly understood. This is particularly true for endangered species threatened by novel infectious agents as opportunities to observe and assess disease impacts and host-pathogen dynamics in the wild are limited. The Tasmanian devil (Sarcophilus harrisii), the world’s largest carnivorous marsupial, is threatened with extinction as a result of an epidemic of an emerging disease, a fatal infectious cancer known as Devil Facial Tumour Disease (DFTD). In this thesis I capitalised on a unique dataset from a population of Tasmanian devils where disease arrived part-way through an intensive longitudinal study, and utilised existing genetic samples collected prior to DFTD outbreak, to determine the impact of DFTD on the demography, population dynamics, genetic diversity and population genetic structure of wild Tasmanian devils. I then used this knowledge of the impacts of DFTD impacts in an unmanaged population to evaluate the effectiveness of a disease management trial involving the selective culling of infected individuals. I employed mark-recapture models to investigate the impact of DFTD on age-specific and sex-specific apparent survival rates, to examine the pattern of variation in infection rates (force of infection), and to investigate the impact of DFTD on population growth rate. I investigated demography, life-history traits and morphometric parameters of infected and uninfected individuals to determine the impacts of DFTD on age-structure and sex-structure, female fecundity and individual growth rates. I used this information to assess the population’s ability to respond to low population densities and to compensate for the detrimental impacts of DFTD. To determine the genetic consequences of disease-induced population decline I used microsatellite DNA to compare genetic diversity, population genetic structure and dispersal patterns in three Tasmanian devil populations prior to and following DFTD outbreaks. Capture-mark-recapture analyses revealed that the arrival of DFTD triggered an immediate decline in apparent survival rates of devils, the rate of which was predicted well by the increase in disease prevalence in the population over time. Transition rates of healthy individuals to the diseased class (the force of infection) increased in relation to disease prevalence, while the arrival of DFTD coincided with a marked and ongoing decline in the population growth rate. There was a significant change to the age structure following the arrival of DFTD. This shift to a younger population was caused by the loss of older individuals as a direct consequence of DFTD-driven declines in adult survival rates. Evidence of reproductive compensation in response to these disease impacts was observed via a reduction in the age of sexual maturity of females over time. However, widespread precocial breeding in devils was precluded by physiological and ecological constraints that limited the ability of one year olds to breed. Using temporally-replicated spatial genetic data, I found evidence of increased inbreeding following DFTD arrival and greater population genetic differentiation in post-disease populations. These changes appeared to be driven by a combination of selection and altered dispersal patterns of females in DFTD-affected populations. Comparison of demographic and epidemiological parameters indicative of disease progression and impact between the managed and unmanaged populations revealed that selective culling of infected individuals neither slowed the rate of disease progression nor reduced the population level impacts of this debilitating disease; with culling mortality simply compensating for disease mortality. This thesis provides one of the few direct empirical evaluations of the impact of an emerging wildlife disease epidemic on a wild population. This thesis revealed that infectious diseases can result in major demographic and genetic changes in host populations over relatively few generations and short time-scales. Results showing dramatic and ongoing population declines and very limited population compensation in DFTD-affected populations indicate that DFTD poses a significant extinction risk for wild devil populations. Hence, this study confirms that host-specific pathogens can pose a significant extinction risk for wild species, even in the absence of alternate reservoir hosts, a finding critical to our understanding of host-pathogen dynamics. My thesis also highlights the potential negative interplay between disease susceptibility and host genetic variability, which is of utmost importance to the management of novel wildlife epizootics and the conservation of threatened wildlife in general. The thorough understanding of the ecology and impacts of DFTD in the wild obtained in this study has provided a solid base from which to both rigorously assess the outcome of management strategies and also formulate recommendations for the management of this disease in the wild. The lack of evidence for successful control of the DFTD epidemic in a wild population during the first phase of a selective culling experimental adaptive management approach, points to the need to implement a multi-faceted disease management program when attempting to control a novel infectious disease in the wild. By drawing on the lessons learnt in this case study I show that it is possible to establish a set of general guidelines for the future management of infectious diseases in threatened wildlife.
26

Applied ecology of the Tasmanian lacewing Micromus tasmaniae Walker (Neuroptera : Hemerodiidae)

Leathwick, D. M. January 1989 (has links)
The Tasmanian lacewing (Micromus tasmaniae Walker) is one of the most common aphid predators occurring in lucerne crops in New Zealand. A comparison of sampling techniques, and the output from a simulation model, suggest that the abundance of this lacewing may have been significantly underestimated in the past. Although the occurrence of aphid predators was erratic M. tasmaniae occurred more often and in far greater numbers (up to 100 m⁻²) than any other predator species. A simulation model for lacewing development in the field indicated that the large adult populations which occurred could be accounted for on the basis of reproductive recruitment. Independent evidence that immigration was not involved in the occurrence of these large populations was gathered using directional flight traps around the field perimeter. The major factors influencing lacewing population dynamics were the availability of aphid prey and, in the autumn, parasitism. Otherwise, survival of all life-histoty stages was high with no evidence of egg or larval cannibalism. Several instances of high lacewing mortality were identified by the model and the lack of any obvious cause for these highlights inadequacies in the understanding of lacewing bionomics. The model, which used a linear relationship (day-degrees) between development and temperature, was incapable of accurately predicting lacewing emergence under field temperatures which fluctuated outside the linear region of the development rate curve. Temperature thresholds and thermal requirements estimated under fluctuating temperatures similar to those in the field produced almost identical model output to those estimated under constant temperatures in the laboratory. Prey species was capable of influencing the rate of lacewing development. M. tasmaniae has the attributes necessary to produce large populations in the short time available between lucerne harvests. The asymptote of the functional response curve is low but the efficiency at converting aphids to eggs is high. Therefore, the lacewing is able to attain maximun reproductive output at low prey densities. A low temperature threshold for development (4-5° C), rapid development and short preoviposition period results in a short generation time (49 days at 15° C). Long adult life, high fecundity and the absence of any form of estivation or diapause, results in complete overlap of generations and multiple generations per year. M. tasmaniae's role as an aphid predator is restricted by its low appetite for prey and by the lucerne management regime currently practiced in New Zealand. Because it consumes relatively few aphids per day the lacewing's ability to destroy large aphid populations is limited. However, this may be offset by its ability to attack aphids early in the aphid population growth phase, and by the large numbers of lacewings which may occur. Under the present lucerne management schemes the large lacewing populations which do occur are forced out of the fields, or die, following harvest. A number of management options for increasing the lacewings impact as an aphid predator are briefly discussed.
27

Development of a mass rearing technique for the Tasmanian brown lacewing, Micromus tasmaniae Walker

Simeonidis, Andrew January 1995 (has links)
Aphids are one of the most important insect pests of greenhouse crops yet to be controlled by biological means. Broad spectrum chemical control is becoming increasingly difficult to use in integrated pest management programmes, therefore, there is a need for a suitable biocontrol agent to be mass reared and released. The Tasmanian brown lacewing, Micromus tasmaniae Walker is an aphid predator that is found commonly throughout Australasia and has suitable characteristics that make it a candidate for mass rearing. A technique for rearing M. tasmaniae was developed. Eggs of M. tasmaniae were reared in batches of 50, 100 and 200 in 20 litre clear plastic containers. The oat aphid, Rhopalosiphum padi L. was fed to the larvae. The results revealed that the highest initial egg density (200 eggs per container) produced the cheapest adults at 22 cents per adult. However, mass rearing adults was considered not practical because of the high production cost, although, mass production of eggs is considered to be economically viable. The cost of producing one egg was 0.015 cents. M tasmaniae was maintained in mass culture for six generations. Simple experiments were carried out to monitor the quality of laboratory-reared insects. The 'wild' insect was used as a quality standard and comparisons with laboratory-reared insect populations were made. The fecundity, development rates and tolerance to pirimicarb, a carbamate insecticide, were determined. Fecundity was found to decline with successive generations in mass culture. The lacewing development experiment indicated that larval stages of each generation suffered the highest mortality rate and that between 35-45% of individuals emerged as adults. The tolerance of adults to pirimicarb did not alter over five generations. Recommendations for improving the mass rearing of M. tasmaniae are discussed.

Page generated in 0.0687 seconds