• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 116
  • 94
  • 52
  • 31
  • Tagged with
  • 293
  • 102
  • 91
  • 16
  • 14
  • 13
  • 12
  • 12
  • 11
  • 10
  • 9
  • 8
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
211

Charakterisierung der Kernmembranproteine Lamin-B-Rezeptor und Bocksbeutel von Drosophila melanogaster / Characterization of nuclear membrane proteins Lamin B Receptor and Bocksbeutel of Drosophila melanogaster

Wagner, Nicole January 2003 (has links) (PDF)
Funktionelle Charakterisierung neuer Proteine der inneren Kernmembran von Drosophila melanogaster: Drosophila Lamin B Rezeptor (dLBR), ein integrales Membranprotein der inneren Kernmembran; Bocksbeutel alpha und Bocksbeutel beta, LEM-Domänen Proteine sowie deren potentiellen Interaktionspartner Drosophila Barrier-to-Autointegration Factor (dBAF). / Functional characterization of novel inner membrane proteins of Drosophila melanogaster: Drosophila Lamin B Receptor (dLBR), a novel integral membrane protein of the inner nuclear membrane; Bocksbeutel alpha and Bocksbeutel beta, LEM-domain proteins and their putative interacting partner Drosophila Barrier-to-Autointegration Factor (dBAF).
212

Charakterisierung von SAP47 in Drosophila melanogaster und der dazugehörigen Proteinfamilie / Characterization of SAP47 in Drosophila melanogaster and its protein familiy

Huber, Saskia January 2003 (has links) (PDF)
In der Arbeit wird ein synapsenassoziiertes Protein, das SAP47 und seine zugehörige Proteinfamilie charakterisiert. / A synapse associated protein, SAP47, and its protein family is characterized.
213

Kinematik und visuelle Steuerung des Kletterverhaltens und der Beinplatzierung der Fliege Drosophila melanogaster und Übertragung auf die Robotik / Kinematics and visual control of climbing behaviour and leg placement in the fly Drosophila melanogaster and applications to robotics

Pick, Simon January 2004 (has links) (PDF)
Im Rahmen dieser Arbeit wurden visuelle Einflüsse auf die Beinplatzierung beim Laufen und auf das Kletterverhalten der Fliege Drosophila melanogaster analysiert. Während sich die Beinplatzierung als vorwiegend taktil gesteuert herausstellte, ist das Klettern sowohl bezüglich der Entscheidung zur Durchführung (Motivationssteuerung) als auch bezüglich der Ausführung selbst unter präziser visueller Kontrolle. Für die Untersuchungen wurde ein Lücken-Überwindungsparadigma entwickelt und die Kinematik des Kletterns über verschieden breite Lücken mit einer eigens entwickelten 3D-Hochgeschwindigkeits-Videoanlage erstmals quantitativ beschrieben. Drei wesentliche Verhaltensanpassungen sorgen dafür, dass die Fliegen die maximal mögliche Spannbreite ihrer Beine voll ausnützen und Lücken von bis zu 170% der eigenen Körperlänge überqueren können. Das Kletterverhalten wird abhängig von der Lückenbreite initiiert und sinnlose Versuche an unüberwindbar breiten Lücken vermieden. Die visuelle Lückenbreitenmessung wurde analysiert; sie beruht auf der Auswertung von Bewegungsparallaxe beim Anlauf. Einige Erkenntnisse aus der Laufforschung an Fliegen wurden auf einem im Rahmen dieser Arbeit modifizierten hexapoden Laufroboter umgesetzt und die Verbesserungen quantifiziert. / This work started out to analyze visual influences on leg placement and on the climbing behavior of the fly Drosophila melanogaster. Whereas leg placement turned out to be predominantly under tactile control, climbing is indeed under tight visual control both with regard to the decision to initiate the behavior (motivational control) as well as with regard to the execution of climbing. A gap-crossing paradigm has been developed to facilitate a detailed study and the kinematics of climbing over gaps of various widths has been quantified using a 3D high-speed video analysis system developed for this purpose. Three major behavioral adaptations help the fly to exploit fully the limits of its leg span in order to overcome gaps of up to 170% of its own body length. Climbing is initiated dependent on gap width. Vain attempts to overcome insurmountably broad gaps are avoided. Analysis showed that the fly uses parallax motion generated during the approach to estimate the width of a gap. Some of the results of the research on the fly’s walking behavior have been implemented in a modified hexapod walking robot, and the improvements have been quantified.
214

"Bruchpilot" -molecular and functional characterization of a novel active zone protein at the Drosophila synapse / "Bruchpilot" - Molekulare und funktionelle Charakterisierung eines neuen Proteins der aktiven Zone der Drosophila-Synapse

Wagh, Dhananjay Anil January 2005 (has links) (PDF)
Chemical neurotransmission is a complex process of central importance for nervous system function. It is thought to be mediated by the orchestration of hundreds of proteins for its successful execution. Several synaptic proteins have been shown to be relevant for neurotransmission and many of them are highly conserved during evolution- suggesting a universal mechanism for neurotransmission. This process has checkpoints at various places like, neurotransmitter uptake into the vesicles, relocation of the vesicles to the vicinity of calcium channels in order to facilitate Ca2+ induced release thereby modulating the fusion probability, formation of a fusion pore to release the neurotransmitter and finally reuptake of the vesicles by endocytosis. Each of these checkpoints has now become a special area of study and maintains its own importance for the understanding of the overall process. Ca2+ induced release occurs at specialized membrane structures at the synapse known as the active zones. These are highly ordered electron dense grids and are composed of several proteins which assist the synaptic vesicles in relocating in the vicinity of Ca2+ channels thereby increasing their fusion probability and then bringing about the vesicular fusion itself. All the protein modules needed for these processes are thought to be held in tight arrays at the active zones, and the functions of a few have been characterized so far at the vertebrate active zones. Our group is primarily interested in characterizing the molecular architecture of the Drosophila synapse. Due to its powerful genetics and well-established behavioural assays Drosophila is an excellent system to investigate neuronal functioning. Monoclonal antibodies (MABs) from a hybridoma library against Drosophila brain are routinely used to detect novel proteins in the brain in a reverse genetic approach. Upon identification of the protein its encoding genetic locus is characterized and a detailed investigation of its function is initiated. This approach has been particularly useful to detect synaptic proteins, which may go undetected in a forward genetic approach due to lack of an observable phenotype. Proteins like CSP, Synapsin and Sap47 have been identified and characterized using this approach so far. MAB nc82 has been one of the shortlisted antibodies from the same library and is widely used as a general neuropil marker due to the relative transparency of immunohistochemical whole mount staining obtained with this antibody. A careful observation of double stainings at the larval neuromuscular junctions with MAB nc82 and other pre and post-synaptic markers strongly suggested an active zone localization of the nc82 antigen. Synaptic architecture is well characterized in Drosophila at the ultrastructural level. However, molecular details for many synaptic components and especially for the active zone are almost entirely unknown. A possible localization at the active zone for the nc82 antigen served as the motivation to initiate its biochemical characterization and the identification of the encoding gene. In the present thesis it is shown by 2-D gel analysis and mass spectrometry that the nc82 antigen is a novel active zone protein encoded by a complex genetic locus on chromosome 2R. By RT-PCR exons from three open reading frames previously annotated as separate genes are demonstrated to give rise to a transcript of at least 5.5 kb. Northern blots produce a prominent signal of 11 kb and a weak signal of 2 kb. The protein encoded by the 5.5 kb transcript is highly conserved amongst insects and has at its N-terminus significant homology to the previously described vertebrate active zone protein ELKS/ERC/CAST. Bioinformatic analysis predicts coiled-coil domains spread all over the sequence and strongly suggest a function involved in organizing or maintaining the structure of the active zone. The large C-terminal region is highly conserved amongst the insects but has no clear homologues in veretebrates. For a functional analysis of this protein transgenic flies expressing RNAi constructs under the control of the Gal4 regulated enhancer UAS were kindly provided by the collaborating group of S.Sigrist (Gِttingen). A strong pan-neuronal knockdown of the nc82 antigen by transgenic RNAi expression leads to embryonic lethality. A relatively weaker RNAi expression results in behavioural deficits in adult flies including unstable flight and impaired walking behavior. Due to this peculiar phenotype as observed in the first knockdown studies the gene was named “bruchpilot” (brp) encoding the protein “Bruchpilot (BRP)” (German for crash pilot). A pan-neuronal as well as retina specific downregulation of this protein results in loss of ON and OFF transients in ERG recordings indicating dysfunctional synapses. Retina specific downregulation also shows severely impaired optomotor behaviour. Finally, at an ultrastructural level BRP downregulation seems to impair the formation of the characteristic T-shaped synaptic ribbons at the active zones without significantly altering the overall synaptic architecture (in collaboration with E.Asan). Vertebrate active zone protein Bassoon is known to be involved in attaching the synaptic ribbons to the active zones as an adapter between active zone proteins RIBEYE and ERC/CAST. A mutation in Bassoon results in a floating synaptic ribbon phenotype. No protein homologous to Bassoon has been observed in Drosophila. BRP downregulation also results in absence of attached synaptic ribbons at the active zones. This invites the speculation of an adapter like function for BRP in Drosophila. However, while Bassoon mutant mice are viable, BRP deficit in addition to the structural phenotype also results in severe behavioural and physiological anomalies and even stronger downregulation causes embryonic lethality. This therefore suggests an additional and even more important role for BRP in development and normal functioning of synapses in Drosophila and also in other insects. However, how BRP regulates synaptic transmission and which other proteins are involved in this BRP dependant pathway remains to be investigated. Such studies certainly will attract prominent attention in the future. / Die chemische Signalübertragung an Synapsen ist ein komplexer Prozess mit zentraler Bedeutung für die Funktion von Nervensystemen. Man nimmt an, dass er auf einem Zusammenspiel hunderter verschiedener Proteine beruht. Diverse Synopsenproteine haben sich für die Neurotransmission als relevant erwiesen und viele davon sind in der Evolution hoch konserviert, was einen universalen Mechanismus der Neurotransmission wahrscheinlich macht. Dieser Prozess ist in zahlreiche aufeinander folgende Schritte unterteilt, wie die Neurotransmitteraufnahme in Vesikel, den Transport von Vesikeln in die Nنhe von Calciumkanنlen, die Ausbildung einer Fusionspore zur Transmitterausschüttung und schlieكlich die Wiederaufnahme von Vesikeln durch Endozytose. Jeder dieser Teilschritte wird momentan gezielt erforscht und spielt für sich genommen eine zentrale Rolle für das Verstنndnis des gesamten Prozesses. Die Calcium-induzierte Transmitterausschüttung findet an spezialisierten Membranstrukturen der Synapsen statt, den aktiven Zonen. Diese sind hoch organisierte, elektronendichte Gitterstrukturen und bestehen aus verschiedenen Proteinen, die den synaptischen Vesikeln bei der Verlagerung in die Nنhe von Calciumkanنlen behilflich sind. Alle Proteinmodule, die für diese Prozesse nِtig sind, scheinen eng aneinandergereiht an den aktiven Zonen vorzuliegen. Nur von wenigen konnte bisher bei Vertebraten die Funktion an der aktiven Zone charakterisiert werden. Ein Fokus der Arbeitsgruppe, an der diese Doktorarbeit durchgeführt wurde, besteht in der Charakterisierung des molekularen Aufbaus der Synapse von Drosophila. Die Taufliege ist aufgrund eines reichen Angebots hِchsteffektiver genetischer Methoden und vielfنltiger Verhaltensparadigmen ein exzellentes Modellsystem, um die neuronale Signalübertragung zu untersuchen. Monoklonale Antikِrper (MAKs) aus einer Hybridomabank gegen das Drosophila Gehirn werden standardmنكig verwendet, um neue Gehirnproteine mittels der „reverse genetics“- Methode zu identifizieren. Dazu wird der entsprechende genetische Lokus charakterisiert und eine detaillierte Untersuchung der Proteinfunktion initiiert. Diese Vorgehensweise war besonders hilfreich bei der Identifizierung von Synapsenproteinen, die bei der „forward genetics“-Methode aufgrund des Fehlens eines beobachtbaren Phنnotyps übersehen würden. Proteine wie CSP, Synapsin und Sap47 wurden so gefunden und charakterisiert. I MAK nc82 stammt aus dieser Hybridomabank und wird in vielen Labors als allgemeiner Neuropilmarker aufgrund seiner hervorragenden Fنrbungseigenschaften in Gehirnprنparaten verwendet. Doppelfنrbungen der larvalen neuromuskulنren Synapse mit dem Antikِrper nc82 in Kombination mit anderen prن- und postsynaptischen Markern deuteten stark auf eine Lokalisierung des Antigens an der aktiven Zone hin. Die Synapsenarchitektur von Drosophila ist auf der ultrastrukturellen Ebene gut verstanden. Jedoch sind die molekularen Details vieler Synapsenkomponenten, besonders die der aktiven Zone, nicht bekannt. Die vermutete Lokalisierung des nc82 Antigens an der aktiven Zone war daher der Ansatzpunkt, eine biochemische Charakterisierung zu initiieren und das entsprechende Gen zu identifizieren. In der vorliegenden Arbeit wird durch 2-D Gelelektrophorese und Massenspektrometrie gezeigt, das das nc82 Antigen ein neues Protein der aktiven Zone ist, welches von einem komplexen Genlokus auf Chromosom 2R kodiert wird. Durch RT-PCR wurde gezeigt, dass die Exons von drei offenen Leserastern, die bisher als getrennte Gene annotiert wurden, ein Transkript von mindestens 5,5 kb Lنnge kodieren. Northern Blots ergaben ein deutliches Signal bei 11 kb und ein schwنcheres bei 2 kb. Das von dem 5,5 kb Transkript resultierende Protein ist hoch konserviert in der Gruppe der Insekten und weist an seiner N-terminalen Domنne eine signifikante Homologie zu den bisher beschriebenen Vertebratenproteinen der aktiven Zone ELKS/ERC/CAST auf. Bioinformatische Analysen sagen „coiled-coil“ Domنnen vorher, die über die gesamte Sequenz verteilt sind. Dies deutet stark auf eine Funktion bei der Organisation oder der Aufrechterhaltung der prنsynaptischen Struktur hin. Die groكe C-terminale Region ist zwar bei Insekten hoch konserviert, zeigt aber keine eindeutige Homologie zu Proteinen von Vertebraten. Für die Funktionsanalyse dieses Proteins wurden transgene Fliegen, die UAS-RNAi Konstrukte in ihrem Genom tragen und durch entsprechende GAL4-Linien getrieben werden kِnnen, freundlicherweise von der kollaborierenden Arbeitsgruppe von S. Sigrist (Gِttingen) zur Verfügung gestellt. Der pan-neuronale „knock-down“ des nc82 Antigens durch transgene RNAi-Expression führt zu embryonaler Letalitنt. Eine schwنchere RNAi-Expression führt bei adulten Fliegen zu Verhaltensdefekten, wie instabilem Flug und beeintrنchtigtem Laufverhalten. Aufgrund dieser Phنnotypen, die in den ersten „knock-down“ Studien beobachtet wurden, wurde das Gen „bruchpilot“ (brp) und das zugehِrige Protein „Bruchpilot“ (BRP) genannt. Die pan-neuronale, sowie die retinaspezifische Reduktion des Proteins führt zu einem Verlust der ON und OFF Transienten des Elektroretinogramms, was auf nichtfunktionelle Synapsen hindeutet. Die retinaspezifische Reduktion des Proteins hat eine Beeintrنchtigung der optomotorischen Reaktion zur Folge. Auكerdem scheint auf der ultrastrukturellen Ebene die Bildung der charakteristischen T-fِrmigen „ribbons“ der aktiven Zonen beeintrنchtigt zu sein, jedoch ohne signifikante Verنnderungen der Gesamtarchitektur der Synapse (in Kollaboration mit E. Asan). Von Basson, einem Protein der aktiven Zone bei Vertebraten, ist bekannt, dass es an der Anheftung der synaptischen „ribbons“ an den aktiven Zonen beteiligt ist. Es fungiert als Adapter zwischen RIBEYE und ELKS/ERC/CAST, zwei weiteren Proteinen der aktiven Zone. Die Mutation von Bassoon hat zur Folge, dass die synaptischen „ribbons“ frei im Zytoplasma treiben. Für Bassoon ist kein homologes Drosophila-Protein bekannt. Die Reduktion von BRP bedingt ebenfalls ein Fehlen befestigter „ribbons“ an der aktiven Zone. Dies kِnnte auf eine Art Adapterfunktion von BRP hindeuten. Jedoch hat das Fehlen von BRP zusنtzlich zum strukturellen Phنnotyp auch deutliche Verhaltensabnormalitنten und starke physiologische Beeintrنchtigungen zur Folge. Eine noch stنrkere Reduktion bedingt auكerdem embryonale Lethalitنt, wohingegen Mausmutanten ohne Bassoon lebensfنhig sind. Daraus ergibt sich, dass BRP eine weitere, wichtige Rolle wنhrend der Entwicklung und für die Funktion von Synapsen bei Drosophila und mِglicherweise auch bei anderen Insekten einnimmt. Es muss aber noch geklنrt werden, auf welche Weise BRP die synaptische Signalübertragung reguliert und welche anderen Proteine in diesem BRP-abhنngigen Pfad involviert sind. Derartige Studien werden mit Sicherheit in der Zukunft eine bedeutende Rolle spielen.
215

The standard brain of Drosophila melanogaster and its automatic segmentation / Das Standardgehirn von Drosophila melanogaster und seine automatische Segmentierung

Schindelin, Johannes January 2005 (has links) (PDF)
In this thesis, I introduce the Virtual Brain Protocol, which facilitates applications of the Standard Brain of Drosophila melanogaster. By providing reliable and extensible tools for the handling of neuroanatomical data, this protocol simplifies and organizes the recurring tasks involved in these applications. It is demonstrated that this protocol can also be used to generate average brains, i.e. to combine recordings of several brains with the same features such that the common features are emphasized. One of the most important steps of the Virtual Insect Protocol is the aligning of newly recorded data sets with the Standard Brain. After presenting methods commonly applied in a biological or medical context to align two different recordings, it is evaluated to what extent this alignment can be automated. To that end, existing Image Processing techniques are assessed. I demonstrate that these techniques do not satisfy the requirements needed to guarantee sensible alignments between two brains. Then, I analyze what needs to be taken into account in order to formulate an algorithm which satisfies the needs of the protocol. In the last chapter, I derive such an algorithm using methods from Information Theory, which bases the technique on a solid mathematical foundation. I show how Bayesian Inference can be applied to enhance the results further. It is demonstrated that this approach yields good results on very noisy images, detecting apparent boundaries between structures. The same approach can be extended to take additional knowledge into account, e.g. the relative position of the anatomical structures and their shape. It is shown how this extension can be utilized to segment a newly recorded brain automatically. / In dieser Arbeit wird das Virtual Brain Protocol vorgestellt, das die Anwendungen rund um das Standardgehirn von \dm\ erleichtert. Durch das Bereitstellen robuster und erweiterbarer Werkzeuge zum Verarbeiten neuroanatomischer Datensätze ermöglicht es ein strukturiertes Abarbeiten der häufig benötigten Vorgänge im Zusammenhang mit der Arbeit mit dem Standardgehirn. Neben der Einpassung neuer Daten in das Standardgehirn kann dieses Protokoll auch dazu verwendet werden, sogenannte Durchschnittshirne zu erstellen; Aufnahmen mehrerer Hirne mit der gleichen zu zeigenden Eigenschaft können zu einem neuen Datensatz kombiniert werden, der die gemeinsamen Charakteristika hervorhebt. Einer der wichtigsten Schritte im Virtual Insect Protocol ist die Alignierung neuer Datensätze auf das Standardgehirn. Nachdem Methoden vorgestellt werden, die üblicherweise im biologischen oder medizinischen Umfeld angewendet werden, um Hirne aufeinander zu alignieren, wird evaluiert, inwiefern dieser Prozess automatisierbar ist. In der Folge werden diverse bildverarbeitende Methoden in dieser Hinsicht beurteilt. Es wird demonstriert, dass diese Verfahren den Anforderungen sinnvoller Alignierungen von Hirnen nicht genügen. Infolgedessen wird genauer analysiert, welche Umstände berücksichtigt werden müssen, um einen Algorithmus zu entwerfen, der diesen Anforderungen genügt. Im letzten Kapitel wird ein solcher Algorithmus mithilfe von Methoden aus der Informationstheorie hergeleitet, deren Verwendung das Verfahren auf eine solide mathematische Basis stellt. Es wird weiterhin gezeigt, wie Bayesische Inferenz angewendet werden kann, um die Ergebnisse darüber hinaus zu verbessern. Sodann wird demonstriert, daß dieser Algorithmus in stark verrauschten Bilddaten ohne zusätzliche Informationen Grenzen zwischen Strukturen erkennen kann, die mit den sichtbaren Grenzen gut übereinstimmen. Das Verfahren kann erweitert werden, um zusätzliche Informationen zu berücksichtigen, wie etwa die relative Position anatomischer Strukturen sowie deren Form. Es wird gezeigt, wie diese Erweiterung zur automatischen Segmentierung eines Hirnes verwendet werden kann.
216

Odor intensity learning in Drosophila / Duftintensitätslernen bei Drosophila

Masek, Pavel January 2005 (has links) (PDF)
It has been known for a long time that Drosophila can learn to discriminate not only between different odorants but also between different concentrations of the same odor. Olfactory associative learning has been described as a pairing between odorant and electric shock and since then, most of the experiments conducted in this respect have largely neglected the dual properties of odors: quality and intensity. For odorant-coupled short-term memory, a biochemical model has been proposed that mainly relies on the known cAMP signaling pathway. Mushroom bodies (MB) have been shown to be necessary and sufficient for this type of memory, and the MB-model of odor learning and short-term memory was established. Yet, theoretically, based on the MB-model, flies should not be able to learn concentrations if trained to the lower of the two concentrations in the test. In this thesis, I investigate the role of concentration-dependent learning, establishment of a concentration-dependent memory and their correlation to the standard two-odor learning as described by the MB-model. In order to highlight the difference between learning of quality and learning of intensity of the same odor I have tried to characterize the nature of the stimulus that is actually learned by the flies, leading to the conclusion that during the training flies learn all possible cues that are presented at the time. The type of the following test seems to govern the usage of the information available. This revealed a distinction between what flies learned and what is actually measured. Furthermore, I have shown that learning of concentration is associative and that it is symmetrical between high and low concentrations. I have also shown how the subjective quality perception of an odor changes with changing intensity, suggesting that one odor can have more than one scent. There is no proof that flies perceive a range of concentrations of one odorant as one (odor) quality. Flies display a certain level of concentration invariance that is limited and related to the particular concentration. Learning of concentration is relevant only to a limited range of concentrations within the boundaries of concentration invariance. Moreover, under certain conditions, two chemically distinct odorants could smell sufficiently similarly such, that they can be generalized between each other like if they would be of the same quality. Therefore, the abilities of the fly to identify the difference in quality or in intensity of the stimuli need to be distinguished. The way how the stimulus is analyzed and processed speaks in favor of a concept postulating the existence of two separated memories. To follow this concept, I have proposed a new form of memory called odor intensity memory (OIM), characterized it and compared it to other olfactory memories. OIM is independent of some members of the known cAMP signaling pathway and very likely forms the rutabaga-independent component of the standard two-odor memory. The rutabaga-dependent odor memory requires qualitatively different olfactory stimuli. OIM is revealed within the limits of concentration invariance where the memory test gives only sub-optimal performance for the concentration differences but discrimination of odor quality is not possible at all. Based on the available experimental tools, OIM seems to require the mushroom bodies the same as odor-quality memory but its properties are different. Flies can memorize the quality of several odorants at a given time but a newly formed memory of one odor interferes with the OIM stored before. In addition, the OIM lasts only 1 to 3 hours - much shorter than the odor-quality memory. / Assoziatives olfaktorisches Lernen bei Drosophila wurde ursprünglich als die Paarung eines Duftes mit einem elektrischen Bestrafungsreiz beschrieben. Seit langem ist dazu bekannt, daß Drosophila nicht nur lernen kann zwei Düfte zu unterscheiden, sondern auch verschiedene Konzentrationen desselben Dufts. Jedoch wird in den meisten auf diese Art durchgeführten Experimenten die Duftintensität weitestgehend ignoriert. - Für das olfaktorische Kurzzeitgedächtnis wurde ein biochemisches Modell vorgeschlagen, welches sich hauptsächlich auf die bekannte cAMP-Signalkaskade stützt. Es wurde gezeigt, dass die Pilzkörper (mushroom bodies, „MB“) notwendig und hinreichend für diese Art der Gedächtnisbildung sind und ein MB-Modell für Duftlernen und Kurzzeitgedächtnis konnte etabliert werden. Interessanterweise sollten Fliegen nach diesem Modell Konzentrationsunterschiede nur in einer Richtung lernen können. Sie würden den gelernten Duft nur gegenüber einer niedrigeren Konzentration wiedererkennen. In der vorliegenden Doktorarbeit habe ich das konzentrationsabhängige Duftlernen und seine Beziehung zum MB-Modell untersucht. Dabei hat sich gezeigt, dass die Fliege eine Gedächtnisspur für Geruchsintensität anlegt. Um den Unterschied zwischen dem Lernen einer Qualität und dem einer Intensität des gleichen Duftes hervorzuheben, habe ich versucht, den Reiz, der eigentlich von der Fliege gelernt wird, zu charakterisieren. Dies führte zu der Schlussfolgerung, dass die Fliege während des Trainings alle in diesem Zeitabschnitt präsentierten Reize erlernt. Erst der dem Training folgende Test scheint den Gebrauch der verfügbaren Information festzulegen. Diese Erkenntnis ist eine wesentliche Grundlage um zwischen dem Testergebnis und dem, was die Fliege gelernt hat zu unterscheiden. Ich habe außerdem gezeigt, daß das Konzentrationslernen eine Form assoziativen Lernens ist und, dass entgegen der Erwartung nach dem MB-Modell eine Symmetrie zwischen den Lernwerten für die hohe und niedrige Konzentration besteht. Es gibt keinen Beweis dafür, dass Fliegen eine Vielfalt von Konzentrationen desselben Duftes als ein und dieselbe (Duft-)Qualität wahrnehmen. Die Ergebnisse legen vielmehr nahe, dass sich bei einer größeren Veränderung der Intensität eines Duftes für die Fliege (wie in vielen Fällen auch beim Menschen) seine Qualität verändert. Demzufolge ist mit jedem Geruchsstoff mehr als nur eine Fliegen-subjektive Geruchsqualität verbunden. Fliegen zeigen andererseits in engen Grenzen Konzentrationsinvarianz. Sie generalisieren zwischen Konzentrationen eines Duftes innerhalb einer Konzentrationsdekade. Deshalb ist das Konzept des Konzentrationslernens nur für ein begrenztes Konzentrationsspektrum innerhalb der Grenzen der Konzentrationsinvarianz relevant. Des weiteren habe ich gezeigt, dass unter besonderen Bedingungen zwei chemisch verschiedene Düfte generalisiert werden können. Möglicherweise haben die beiden Düfte hinreichend "ähnliche" oder gleiche Fliegen-subjektive Qualität und können nur nach der Intensität unterschieden werden. Die Fliege hat die Fähigkeit im Test Unterschiede einerseits in der Qualität und andererseits in der Intensität des Reizes zu ermitteln. Die Art und Weise, wie der Reiz analysiert und verarbeitet wird, erfordern ein Konzept zweier getrennter Gedächtnisse. Dementsprechend habe ich eine neue Gedächtnisart, ein sogenanntes Duftintensitätsgedächtnis (OIM) vorgeschlagent und versucht dieses neben anderen olfaktorischen Gedächtnissen einzuordnen. Das OIM ist unabhängig bezüglich einiger Bestandteile des bekannten cAMP-Signalwegs und stellt höchstwahrscheinlich den rutabaga-unabhängigen Teil des Zwei-Düfte-Lernens dar. Das rutabaga-abhängige Duftgedächtnis benötigt qualitativ verschiedene Duftreize. Das OIM reicht lediglich für eine suboptimale Leistung aus, funktioniert aber in den Grenzen der Konzentrationsinvarianz, innerhalb derer die Diskriminierung und damit auch das Lernen der Duftqualität nicht möglich sind. Das OIM scheint wie die Duftqualitätsgedächtnisse die Pilzkörper zu benötigen. Aber die Art der Speicherung ist von der der Duftqualitätsgedächtnisse verschieden. Fliegen können viele Duftqualitäten zu einem bestimmten Zeitpunkt aus dem Gedächtnis abrufen, jedoch interferiert ein neu gebildetes Gedächtnis eines bestimmten Duftes mit dem bereits gespeicherten OIM. Außerdem ist das OIM für nur 1-3 Stunden stabil, was erheblich kürzer als beim Duftgedächtnis ist.
217

Sugar reward learning in Drosophila : neuronal circuits in Drosophila associative olfactory learning / Zucker-Belohnungslernen von Drosophila

Thum, Andreas Stephan January 2006 (has links) (PDF)
Genetic intervention in the fly Drosophila melanogaster has provided strong evidence that the mushroom bodies of the insect brain act as the seat of memory traces for aversive and appetitive olfactory learning (reviewed in Heisenberg, 2003). In flies, electroshock is mainly used as negative reinforcer. Unfortunately this fact complicates a comparative consideration with other inscets as most studies use sugar as positive reinforcer. For example, several lines of evidence from honeybee and moth have suggested another site, the antennal lobe, to house neuronal plasticity underlying appetitive olfactory memory (reviewed in Menzel, 2001; Daly et al., 2004). Because of this I focused my work mainly on appetitive olfactory learning. In the first part of my thesis, I used a novel genetic tool, the TARGET system (McGuire et al., 2003), which allows the temporally controlled expression of a given effector gene in a defined set of cells. Comparing effector genes which either block neurotransmission or ablate cells showed important differences, revealing that selection of the appropriate effector gene is critical for evaluating the function of neural circuits. In the second part, a new engram of olfactory memory in the Drosophila projection neurons is described by restoring Rutabaga adenlylate cyclase (rut-AC) activity specifically in these cells. Expression of wild-type rutabaga in the projection neurons fully rescued the defect in sugar reward memory, but not in aversive electric shock memory. No difference was found in the stability of the appetitive memories rescued either in projection neurons or Kenyon cells. In the third part of the thesis I tried to understand how the reinforcing signals for sugar reward are internally represented. In the bee Hammer (1993) described a single octopaminergic neuron – called VUMmx1 – that mediates the sugar stimulus in associative olfactory reward learning. Analysis of single VUM neurons in the fly (Selcho, 2006) identified a neuron with a similar morphology as the VUMmx1 neuron. As there is a mutant in Drosophila lacking the last enzymatic step in octopamine synthesis (Monastirioti et al., 1996), Tyramine beta Hydroxylase, I was able to show that local Tyramine beta Hydroxylase expression successfully rescued sugar reward learning. This allows to conclude that about 250 cells including the VUM cluster are sufficient for mediating the sugar reinforcement signal in the fly. The description of a VUMmx1 similar neuron and the involvement of the VUM cluster in mediating the octopaminergic sugar stimulus are the first steps in establishing a neuronal map for US processing in Drosophila. Based on this work several experiments are contrivable to reach this ultimate goal in the fly. Taken together, the described similiarities between Drosophila and honeybee regarding the memory organisation in MBs and PNs and the proposed internal representation of the sugar reward suggest an evolutionarily conserved mechanism for appetitive olfactory learning in insects. / Arbeiten über das assoziative olfaktorische Lernen bei Drosophila, bei denen definierte Gruppen von Nerven genetisch verändert wurden, haben gezeigt, dass die Pilzkörper des Insektengehirns Gedächtnisspuren für aversives und appetitives Geruchslernen besitzen (Heisenberg, 2003). Hierzu wird bei der Fliege meistens Elektroschock als negativer Reiz bei der Pavlovschen Konditionierung benutzt. Leider erschwert dies einen Vergleich mit anderen Insekten, da in den meisten Studien Zucker als positiver Stimulus verwendet wird. Interessanterweise schlagen mehrere Arbeiten bei der Biene und der Motte zusätzlich zu den Pilzkörpern einen weiteren Bereich im Insektengehirn vor, der eine Gedächtnisspur des appetitiven Geruchslernens besitzt, die Antennalloben (Menzel, 2001; Daly et al., 2004). Aus diesen Gründen habe ich mich in meiner Arbeit intensiv mit dem appetitiven Geruchslernen beschäftigt. Im ersten Teil meiner Arbeit habe ich das TARGET System verwendet (McGuire et al., 2003), welches die zeitlich kontrollierte Expression eines beliebigen Reportergens in definierten Zellen erlaubt. Ein Vergleich verschiedener Effektoren zeigte, dass Proteine, die die Neurotransmission blocken (Shits; TNT, Kir2.1), besser geeignet sind, um die Funktion neuronaler Schaltkreise in Drosophila zu untersuchen. Effektoren, die Zellen abtöten, entfalten lediglich während der Entwicklung ihre volle Aktivität und eignen sich daher, z.B. um das larvale Verhalten zu analysieren. Im zweiten Teil beschreibe ich eine neue Gedächtnisspur für das Geruchslernen in den Projektionsneuronen. Die Expression des wildtypischen rutabaga Gens ausschließlich in diesen Zellen, rettete den Defekt im Zuckerlernen, nicht aber im Elektroschocklernen. Ferner scheinen die Gedächtnisspuren des appetitven Geruchslernens im Pilzkörper und den Projektionsneuronen gleich stabil zu sein. Im dritten Teil dieser Arbeit wurde die Frage gestellt, wie das Belohnungssignal des Zuckers im Fliegengehirn verarbeitet wird. Hammer (1993) beschrieb in der Biene ein einzelnes octopaminerges Neuron, das VUMmx1 Neuron, welches den Zuckerreiz beim assoziativen Geruchslernen vermittelt. Eine Einzelzellanalyse des VUM clusters von Drosophila zeigte ein ähnliches VUMmx1 Neuron erstmals bei der Fliege (M. Selcho, Diplomarbeit). Durch die lokale Expression der Tyramin beta Hydroxylase, das Oktopamin synthetisierende Enzym, im T-beta-H Mutanten Hintergrund, konnte gezeigt werden, dass ca. 250 Zellen (inklusive des VUM Clusters) ausreichen, das Belohnungssignal des Zuckers zu vermitteln. Beides, die Identifizierung eines VUMmx1 ähnlichen Neurons in der Fliege und die Eingrenzung der Neuronen, die das Belohnungssignal vermitteln, bilden die Basis für weitergehende Versuche. Diese erlauben es, neuronale Schaltkreise der US (Zucker)-Verarbeitung beim assoziativen olfaktorischen Lernen detailliert zu beschreiben. Insgesamt legen die übereinstimmenden Gedächtnisspuren im Pilzkörper und den Projektionsneuronen von Drosophila und der Honigbiene nahe, dass das olfaktorische Belohnungslernen einem in der Evolution konservierten Mechanismus entstammt.
218

Untersuchung prädiktiver Eigenschaften des dopaminergen Systems von Drosophila melanogaster mittels genetisch kodierter Calcium Sensoren / Analysis of predictive features in the dopaminergic System of Drosophila melanogaster using genetically encoded Calcium Sensors

Riemensperger, Thomas January 2006 (has links) (PDF)
Die Technik des optischen Imaging unter Verwendung DNA-codierter Sensoren ermöglicht es, Messungen neuraler Aktivitäten in genetisch definierten Populationen von Neuronen durchzuführen. In der Vielzahl der verschiedenen entwickelten Sensoren konnten die Calciumsensoren bisher das beste Verhältnis zwischen Signal und Rauschen und die beste zeitliche Auflösung aufzeigen. Hierbei handelt es sich in erster Linie um zwei Typen von Sensoren, zum einen ratiometrische Sensoren, deren Signal auf einem Fluoreszenz Resonanz Energie Transfer (FRET) basiert, und zum anderen um zirkulär permutierte Sensoren, die auf einem modifizierten GFP-Molekül basieren, wobei das Signal auf einer veränderten Protonierung des Chromophors beruht. Beide Arten dieser Sensoren wurden schon erfolgreich zum Messen neuraler Aktivitäten in Nervensystemen verschiedener Tierarten verwendet. Ein Teil dieser Arbeit bestand darin, zu untersuchen, welche Sensoren sich für die Messung an einem lebenden Organismus am besten eignen. Hierfür wurden die Eigenschaften von vier verschiedenen FRET basierten Sensoren und zwei der zyklisch permutierten Sensoren nach Expression im zentralen Nervensystem von Drosophila charakterisiert. Die Sensoren wurden in Neuronen zweiter und dritter Ordnung des olfaktorischen Signalwegs exprimiert und ihre Antworten auf physiologische Duftstimulation oder artifiziell induzierte Depolarisation des Gehirns untersucht. Während die calciumabhängigen Signale der zyklisch permutierten Sensoren in der Regel größer waren als die der FRET basierten Sensoren, zeichneten sich letztere durch ein besseres Signal zu Rausch-Verhältnis aus, wenn Bewegungen der fluoreszierenden Strukturen nicht zu vermeiden waren. Dies war auch der ausschlaggebende Grund für die Verwendung eines FRET basierten Sensors im anschließenden Teil der Arbeit. Im zweiten Teil der Arbeit wurde der Effekt untersucht, den die Paarung eines neutralen Stimulus mit einem bestrafenden Stimulus auf dopaminerge Neurone hat. Eine solche Paarung kann zu einer klassischen Konditionierung führen, einer einfachen Form des Lernens, in welcher das Tier einem ursprünglich neutralen Stimulus einen Wert zuordnet, und dadurch sein Verhalten dem Stimulus gegenüber ändert. Die olfaktorische klassische Konditionierung in Drosophila wird seit vielen Jahren intensiv untersucht, um die molekularen und neuronalen Grundlagen von Lernen und Gedächtnis zu charakterisieren. Dabei hat sich gezeigt, dass besonders die Pilzkörper von essentieller Bedeutung für die Ausbildung eines olfaktorischen Gedächtnisses sind. Während das olfactorische System bei Insekten bereits detailiert analysiert wurde, ist über die Neurone, die den bestrafenden Stimulus vermitteln, nur sehr wenig bekannt. Unter Anwendung des funktionellen optischen Calcium Imaging konnte im Rahmen der Arbeit gezeigt werden, dass die Projektionen von dopaminergen Neuronen im Bereich der Loben der Pilzkörper schwach auf die Präsentation eines Duftes, jedoch sehr stark auf eine Stimulation durch einen Elektroschock antworten. Nach mehrmaliger Paarung eines Duftes mit einem Elektroschock während eines Trainings, verlängert sich die Aktivität dieser dopaminergen Neurone auf den bestraften Duft hin im Test ohne Elektroschock drastisch, während die Antwort auf den Kontrollduft keine signifikanten Veränderungen aufweist. Während bei Säugetieren belohnende Reize bei appetitiven Lernvorgängen über dopaminerge Neurone vermittelt werden, spielen bei Drosophila diese Neurone offensichtlich eine Rolle bei der aversiven Konditionierung. Jedoch blieb, auch wenn sich die Rolle des Dopamins im Laufe der Evolution geändert zu haben scheint, die Fähigkeit dieses Neuronentyps, nicht nur auf einen eintreffenden verstärkenden Stimulus zu reagieren, sondern diesen auch vorhersagen zu können, zwischen Säugern und Drosophila erhalten. / The technique of optical in vivo imaging using genetically encoded fluorescent sensors in transgenic animals has paved the way for real-time monitoring of spatio-temporal activity in the brain. Among the different fluorescent probes, the calcium sensors produce signals with the highest signal to noise ratio and the best temporal resolution. Basically these sensors can be split into two groups, those based on a FRET-effect between two modified green fluorescent proteins (GFPs) and those which make use of on a circular permutation of GFP. Both types have successfully been used for measuring neuronal activity in various species. One part of the present work was to test which of these different sensor types are best suited for an in vivo situation. For this, two members of the class of circularly permutated sensors and four members of the class of FRET based sensors were tested and compaired in Drosophila. Each sensor was expressed in second and third order neurons of the olfactory pathway and the calcium activity evoked by artificial depolarisation or physiological odour stimuli was recorded. Whereas the Calcium dependent change in signal intensity is substantially higher for the circularly permutated sensors, the FRET based sensors tested in this work showed a better signal to noise ratio when movement of the brain structures under investigation could not be prevented. For this reason a FRET based sensor was chosen to measure the activity of dopaminergic neuronsin a classical conditioning paradigm. In the second part of this work the effect of pairing a neutral stimulus with a negative reinforcer (in this case an electric shock) on the activity of dopaminergic neurons was investigated. The pairing of these two stimuli can lead to classical conditioning, a simple form of learning in which the animal assigns a value (positive or negative) to the formerly neutral stimulus. Olfactory classical conditioning in Drosophila melanogaster is a prime model for the analysis of the molecular and neuronal substrate of this type of learning and memory. In particular the mushroom bodies have been shown to be essential for olfactory memory formation. While the olfactory system of insects has been extensively characterized little is known about the neurons that mediate the reinforcing stimulus. Using the technique of optical calcium imaging it was possible to show that dopaminergic projections in the region of the mushroom body lobes responded weakly to odour presentations, but strongly to the stimulation by an electric shock. After pairing for several times one of two odours presented to the fly with an electric shock (training), the activity of the dopaminergic neurons to the punished odour is significantly prolonged in a test after the training. No change is observed after the training for the control odour that was not paired with the electric shock. Whereas in mammals rewarding stimuli are mediated by dopaminergic neurons, in Drosophila this catecholamine apparently plays a role in mediating aversive reinforcement. Even though the role of dopamine seems to have changed during evolution the capability of dopaminergic neurons to predict a reinforcing stimulus appears to be conserved between Drosophila and mammals.
219

Mechanism of Learning and Plasticity in Larval Drosophila / Lern- und Plastizitätsmechanismen in Drosophila Larven

Saumweber, Timo January 2011 (has links) (PDF)
According to a changing environment it is crucial for animals to make experience and learn about it. Sensing, integrating and learning to associate different kinds of modalities enables animals to expect future events and to adjust behavior in the way, expected as the most profitable. Complex processes as memory formation and storage make it necessary to investigate learning and memory on different levels. In this context Drosophila melanogaster represents a powerful model organism. As the adult brain of the fly is still quite complex, I chose the third instar larva as model - the more simple the system, the easier to isolate single, fundamental principles of learning. In this thesis I addressed several kinds of questions on different mechanism of olfactory associative and synaptic plasiticity in Drosophila larvae. I focused on short-term memory throughout my thesis. First, investigating larval learning on behavioral level, I developed a one-odor paradigm for olfactory associative conditioning. This enables to estimate the learnability of single odors, reduces the complexity of the task and simplify analyses of "learning mutants". It further allows to balance learnability of odors for generalization-type experiments to describe the olfactory "coding space". Furthermore I could show that innate attractiveness and learnability can be dissociated and found finally that paired presentation of a given odor with reward increase performance, whereas unpaired presentations of these two stimuli decrease performance, indicating that larva are able to learn about the presence as well as about the absence of a reward. Second, on behavioral level, together with Thomas Niewalda and colleagues we focussed on salt processing in the context of choice, feeding and learning. Salt is required in several physiological processes, but can neither be synthesized nor stored. Various salt concentrations shift the valence from attraction to repulsion in reflexive behaviour. Interestingly, the reinforcing effect of salt in learning is shifted by more than one order of magnitude toward higher concentrations. Thus, the input pathways for gustatory behavior appear to be more sensitive than the ones supporting gustatory reinforcement, which is may be due to the dissociation of the reflexive and the reinforcing signalling pathways of salt. Third, in cooperation with Michael Schleyer we performed a series of behavioral gustatory, olfactory preference tests and larval learning experiments. Based on the available neuroanatomical and behavioral data we propose a model regarding chemosensory processing, odor-tastant memory trace formation and the 'decision' like process. It incorporates putative sites of interaction between olfactory and gustatory pathways during the establishment as well as behavioral expression of odor-tastant memory. We claim that innate olfactory behavior is responsive in nature and suggest that associative conditioned behavior is not a simple substitution like process, but driven more likely by the expectation of its outcome. Fourth, together with Birgit Michels and colleagues we investigated the cellular site and molecular mode of Synapsin, an evolutionarily conserved, presynaptic vesicular phosphoprotein and its action in larval learning. We confirmed a previously described learning impairment upon loss of Synapsin. We localized this Synapsin dependent memory trace in the mushroom bodies, a third-order "cortical" brain region, and could further show on molecular level, that Synapsin is as a downstream element of the AC-cAMP-PKA signalling cascade. This study provides a comprehensive chain of explanation from the molecular level to an associative behavioral change. Fifth, in the main part of my thesis I focused on molecular level on another synaptic protein, the Synapse associated protein of 47kDa (Sap47) and its role in larval behavior. As a member of a phylogenetically conserved gene family of hitherto unknown function. It is localized throughout the whole neuropil of larval brains and associated with presynaptic vesicles. Upon loss of Sap47 larvae exhibit normal sensory detection of the to-be-associated stimuli as well as normal motor performance and basic synaptic transmission. Interestingly, short-term plasticity is distorted and odorant–tastant associative learning ability is reduced. This defect in associative function could be rescued by restoring Sap47 expression. Therefore, this report is the first to suggest a function for Sap47 and specifically argues that Sap47 is required for synaptic as well as for behavioral plasticity in Drosophila larva. This prompts the question whether its homologs are required for synaptic and behavioral plasticity also in other species. Further in the last part of my thesis I contributed to the study of Ayse Yarali. Her central topic was the role of the White protein in punishment and relief learning in adult flies. Whereas stimuli that precede shock during training are subsequently avoided as predictors for punishment, stimuli that follow shock during training are later on approached, as they predict relief. Concerning the loss of White we report that pain-relief learning as well as punishment learning is changed. My contribution was a comparison between wild type and the white1118 mutant larvae in odor-reward learning. It turned out that a loss of White has no effect on larval odorant-tastant learning. This study, regarding painrelief learning provides the very first hints concerning the genetic determinants of this form of learning. / In einer belebten, sich stetig wandelnden Umwelt ist es essenziell für Lebewesen, Informationen wahrzunehmen und Erfahrungen zu sammeln, um ihr Verhalten entsprechend zu modifizieren. Verschiedene Arten von Reizen werden wahrgenommen, integriert und gespeichert. Dies ermöglicht Tieren künftige Ereignisse vorherzusehen und ihr Verhalten entsprechend ihren Erwartungen anzupassen. Die Komplexität von Lernprozessen und Gedächtnisspeicherung macht es notwendig, diese Prozesse auf unterschiedlichen Ebenen zu untersuchen. In diesem Zusammenhang hat sich Drosophila melanogaster als besonders geeigneter Modellorganismus herauskristallisiert. Trotz einer relativ geringen neuronalen Komplexität im Vergleich zu höheren Organismen, zeigt sie ein reichhaltiges Verhaltensrepertoire. Dennoch ist das Gehirn von adulten Furchtfliegen ein hoch komplexes System. Je einfacher ein System ist, umso vielversprechender ist es scheinbar, einzelne fundamentale Aspekte dieses Systems zu isolieren und zu untersuchen. In meiner Arbeit nutzte ich daher als Modelorganismus das dritte Larvenstadium der Fliege und untersuchte auf verschiedenen Ebenen unterschiedliche Mechanismen olfaktorischer, assoziativer und synaptischer Plastizität. Dabei fokussierte ich mich stets auf Kurzzeitgedächtnis. Zunächst untersuchte ich assoziatives Lernen auf Verhaltensebene. Hierfür entwickelte ich ein Ein-Duft-Lernparadigma für olfaktorische klassische Konditionierung von Drosophila Larven. Dies ermöglicht, die Lernbarkeit von einzelnen Düften zu untersuchen, reduziert die Komplexität der Aufgabenstellung für die Larven und vereinfacht die Analyse von Lernmutanten. Weiterhin erlaubt es die Lernbarkeit von Düften für Generalisierungs-experimente zu balancieren, um zu beschreiben, wie Duftidentitäten im Nervensystem kodiert werden. Ich konnte zeigen, dass die Lernbarkeit von Düften nicht unmittelbar mit der naiven Duftpräferenz korreliert. Ferner konnte in dieser Studie nachgewiesen werden, dass durch gepaarte Präsentation von Duft und Zuckerbelohnung die Präferenz im Bezug auf diesen Duft zunimmt, wohingegen ungepaarte Präsentation dieser beiden Reize zu einer Abnahme der Duftpräferenz führt. Dies weist darauf hin, dass es Larven auch möglich ist etwas über die Abwesenheit der Belohnung zu lernen. In einer zweiten Studie befasste ich mich, in Zusammenarbeit mit Thomas Niewalda, mit der Verarbeitung von Salz im Bezug auf das Wahl-, Fress- und Lernverhalten von Drosophila Larven. Salze spielen in mehreren physiologischen Prozessen eine bedeutende Rolle, können von Larven aber weder synthetisiert noch gespeichert werden. Unterschiedliche Salzkonzentrationen haben unterschiedliche Auswirkungen auf das Larvenverhalten. Während niedrige Konzentrationen von Larven bevorzugt werden, werden hohe Salzkonzentrationen vermieden. Lernexperimente zeigten, dass Salz ebenfalls dosisabhängig als positiver oder negativer Verstärker wirkt. Interessanterweise zeigt sich im Vergleich zum Wahl- und Fressverhalten, dass der Punkt, an dem Salz von einem appetitiven zu einem aversiven Stimulus wird, um mehr als eine Größenordnung in Richtung höherer Konzentrationen verschoben ist. Die Sensitivität der gustatorischen Transduktion ist somit höher als die Transduktion des Verstärkersignals. Möglicherweise liegt dies an der Dissoziation dieser beiden Transduktionswege. In der dritten Studie dieser Arbeit wurden, in Kooperation mit Michael Schleyer, eine Vielzahl an olfaktorischen und gustatorischen Präferenztests, sowie eine Reihe an Lernexperimenten durchgeführt. Basierend auf bekannten Neuroanatomiestudien und unseren Verhaltensdaten, propagieren wir ein Model für Duft- und Geschmacksprozessierung, die Etablierung von Gedächtnisspuren, sowie Entscheidungsprozessen. Sowohl mögliche Interaktionen zwischen olfaktorischen und gustatorischen Transduktionswegen, sowie der Abruf von Gedächtnisinhalten werden berücksichtigt. Wir schlagen vor, dass naives olfaktorisches Verhalten natürlicherweise reflexiv ist. Assoziativ konditioniertes Verhalten kann allerdings nicht als reiner Substitutionsprozess betrachtet werden, sondern wird besser interpretiert im Hinblick auf die Erwartung, die er auslöst, woraufhin ein bestimmtes Verhaltensprogramm gestartet wird. In Zusammenarbeit mit Birgit Michels untersuchte ich auf zellulärer Ebene die molekulare Funktion von Synapsin im assoziativen Lernen von Drosophila Larven. Synapsin gehört zu den hochkonservierten, präsynaptischen, vesikulären Phosphoproteinen. Wir konnten einen früher bereits beschriebenen Lernphänotyp von Synapsin Mutanten Larven bestätigen. Die Synapsin abhängige Gedächtnisspur konnten wir auf wenige Zellen im Pilzkörper, einer dem olfaktorischen Cortex der Vertebraten homologen Struktur, lokalisieren. Auf molekularer Ebene wurde nachgewiesen, dass Synapsin ein Zielprotein in der bekannten AC-cAMP-PKA Lernkaskade ist. Diese Studie zeigt einen Zusammenhang zwischen molekularen Mechanismen assoziativer Plastizität und einer daraus resultierenden Verhaltensänderung der Tiere. In meinem Hauptprojekt befasste ich mich auf molekularer Ebene mit einem weiteren synaptischen Protein, dem Synapsen assoziierten Protein von 47kDa (Sap47) und seiner Rolle im Verhalten von Drosophila Larven. Sap47 wird in allen neuropilen Bereichen expremiert und ist mit synaptischen Vesikeln assoziiert. Das Fehlen von Sap47 beeinflusst weder die Detektion der zu assoziierenden Reize, noch das Kriechverhalten der Larven. Auch die synaptische Übertragung, ausgelöst durch einzelne Stimulationen an der neuromuskulären Synapse, ist nicht beeinträchtigt. Interessanterweise führt das Fehlen von Sap47 sowohl zu veränderter Kurzzeit-Plastizität an dieser Synapse, sowie zu einer Einschränkung in der Bildung von Duft-Zucker-Gedächtnis. Diese Studie liefert einen ersten Hinweis auf eine Funktion von Sap47 in synaptischer und assoziativer Plastizität. Es stellt sich die Frage, ob auch in anderen Organismen die zu Drosophila Sap47-homologen Proteine notwendig für synaptische und Lernplastizität sind. Im letzten Teil meiner Dissertation war ich an einem Projekt von Ayse Yarali beteiligt. Die zentrale Fragestellung in dieser Studie war, ob eine Mutation im white Gen Bestrafungs- und/ oder Erleichterungslernen beeinflusst. Wird ein neutraler Reiz während einer Trainingsphase mit einem Elektroschock bestraft, wird dieser später konsequent vermieden, da er einen Elektroschock vorhersagt (Bestrafungslernen). Eine Umkehrung der Reihenfolge der Stimulipräsentation, sodass dem Schock stets ein neutraler Stimulus folgt, führt später, in der Testphase, zu einer positiven Reaktion auf diesen naiv neutralen Reiz (Erleichterungslernen). Ein Verlust des White Proteins in white1118 Mutanten verändert beide Arten von Gedächtnissen in adulten Fliegen. Meine Beteiligung an dieser Arbeit war ein Vergleich zwischen wildtypischen Larven und white1118 mutanten Larven in Duft-Zucker Assoziationsexperimenten. Es zeigte sich, dass der Verlust dieses Proteins auf larvale Duft-Zucker Konditionierung keinen Einfluss hat. Im Larvenlernen kann somit das Verhalten von transgenen Tieren, die zumeist eine Mutation im white Gen als Markergen tragen, interpretiert werden, ohne die Funktion des white Gens berücksichtigen zu müssen. Im Bezug auf Erleichterungslernen liefert diese Arbeit einen ersten Hinweis auf eine genetische Komponente, der entscheidend für diese Art des assoziativen Lernens ist.
220

In vivo imaging and optogenetic approach to study the formation of olfactory memory and locomotor behaviour in Drosophila melanogaster / In vivo Imaging und der optogenetische Ansatz zu Untersuchung der Gedächtnissbildung und lokomotorischem Verhalten bei Drosophila melanogaster

Kapustjansky, Alexander January 2011 (has links) (PDF)
Understanding of complex interactions and events in a nervous system, leading from the molecular level up to certain behavioural patterns calls for interdisciplinary interactions of various research areas. The goal of the presented work is to achieve such an interdisciplinary approach to study and manipulate animal behaviour and its underlying mechanisms. Optical in vivo imaging is a new constantly evolving method, allowing one to study not only the local but also wide reaching activity in the nervous system. Due to ease of its genetic accessibility Drosophila melanogaster represents an extraordinary experimental organism to utilize not only imaging but also various optogenetic techniques to study the neuronal underpinnings of behaviour. In this study four genetically encoded sensors were used to investigate the temporal dynamics of cAMP concentration changes in the horizontal lobes of the mushroom body, a brain area important for learning and memory, in response to various physiological and pharmacological stimuli. Several transgenic lines with various genomic insertion sites for the sensor constructs Epac1, Epac2, Epac2K390E and HCN2 were screened for the best signal quality, one line was selected for further experiments. The in vivo functionality of the sensor was assessed via pharmacological application of 8-bromo-cAMP as well as Forskolin, a substance stimulating cAMP producing adenylyl cyclases. This was followed by recording of the cAMP dynamics in response to the application of dopamine and octopamine, as well as to the presentation of electric shock, odorants or a simulated olfactory signal, induced by acetylcholine application to the observed brain area. In addition the interaction between the shock and the simulated olfactory signal by simultaneous presentation of both stimuli was studied. Preliminary results are supporting a coincidence detection mechanism at the level of the adenylyl cyclase as postulated by the present model for classical olfactory conditioning. In a second series of experiments an effort was made to selecticvely activate a subset of neurons via the optogenetic tool Channelrhodopsin (ChR2). This was achieved by recording the behaviour of the fly in a walking ball paradigm. A new method was developed to analyse the walking behaviour of the animal whose brain was made optically accessible via a dissection technique, as used for imaging, thus allowing one to target selected brain areas. Using the Gal4-UAS system the protocerebral bridge, a substructure of the central complex, was highlighted by expressing the ChR2 tagged by fluorescent protein EYFP. First behavioural recordings of such specially prepared animals were made. Lastly a new experimental paradigm for single animal conditioning was developed (Shock Box). Its design is based on the established Heat Box paradigm, however in addition to spatial and operant conditioning available in the Heat Box, the design of the new paradigm allows one to set up experiments to study classical and semioperant olfactory conditioning, as well as semioperant place learning and operant no idleness experiments. First experiments involving place learning were successfully performed in the new apparatus. / Das Verständniss für die komplexen Interaktionen und Zusammenhänge, die von der molekularen Ebene bis zum Auftreten von bestimmten Verhaltensmustern führen, erfordert die interdisziplinäre Zusammenarbeit unterschiedlicher Forschungsrichtungen. Das Ziel der vorgelegten Arbeit war es einen solchen interdisziplinären Ansatz für die Erforschung und die Manipulation von Verhalten und ihm zu Grunde liegenden Mechanismen zu verwirklichen. Optisches in vivo Imaging ist eine neue, sich ständig weiterentwickelnde Methode, welche es ermöglicht, nicht nur lokale sondern auch weitläufige Aktivitäten innerhalb des Nervensystem zu untersuchen. Drosophila melanogaster stellt aufgrund der leichten genetischen Zugänglichkeit einen herausragenden experimentellen Organismus dar, bei welchem neben optischem Imaging eine ganze Reihe optogenetischer Methoden angewandt werden kann, um die neuronalen Grundlagen des Verhaltens zu erforschen. Im Rahmen dieser Arbeit wurde mit Hilfe von vier genetisch kodierten Sensoren in vivo die Dynamik der cAMP Konzentration in den horizontalen Loben des Pilzkörpers, bei Applikation unterschiedlicher physiologischer und pharmazeutischer Stimuli untersucht. Dabei wurden mehrere transgene Fliegenlinien mit Sensorkonstrukten Epac1, Epac2, Epac2K390E und HCN2 an unterschiedlichen genomischen Insertionsorten, hinsichtlich ihrer Signalqualität untersucht, eine der Linien wurde für weitere Experimente ausgewählt. Zunächst wurde an dieser die in vivo Tauglichkeit des Sensors gezeigt, indem die Konzentration von cAMP durch pharmakologische Applikationen von 8-Bromo-cAMP und Forskolin, einer Substanz welche die Aktivität von cAMP produzierenden Adenylatcyclasen stimuliert, appliziert wurden. Anschließend wurde eine Untersuchung der cAMP Dynamik als Antwort auf einen elektrischen Schock, unterschiedliche Düfte, sowie einen durch Applikation von Acetylcholin simulierten Duftstimulus durchgeführt. Vorläufige Ergebnisse bestärken das aktuelle Modell der klassischen olfaktorischen Konditionierung durch die Koinzidenzdetektion auf der Ebene der Adenylatcyclase. In einem weiteren Experiment wurde der Versuch einer optogenetischen neuronalen Aktivierung unternommen, dabei wurde basierend auf einem Laufball Paradigma eine Methode entwickelt, das Laufverhalten der Fliegen zu analysieren während ihr Gehirn durch eine Imaging-Präparation freigelegt wurde, um gezielt bestimmte durch fluoreszierende Proteine markierte Gehirnbereiche anzuregen. Erste Aufzeichnungen des Laufverhaltens bei Aktivierung der protocerebrallen Brücke, einer Substruktur des Zentralkomplexes, wurden durchgeführt. Schließlich wurde eine neue Apparatur (Shock Box) für die Konditionierung von Einzeltieren entwickelt und gebaut, das Design beruht auf dem der sogenannten Heat Box, ermöglicht jedoch klassische und semioperante olfaktorische Konditionierung zusätzlich zu der in der Heat Box möglichen räumlichen und operanten Konditionierung. Die ersten Versuche für räumliches Lernen wurden in der Apparatur durchgeführt.

Page generated in 0.0655 seconds