Spelling suggestions: "subject:"tem theory"" "subject:"term theory""
1 |
Information-Theoretic Control of Multiple Sensor PlatformsGrocholsky, Ben January 2002 (has links)
This thesis is concerned with the development of a consistent, information-theoretic basis for understanding of coordination and cooperation decentralised multi-sensor multi-platform systems. Autonomous systems composed of multiple sensors and multiple platforms potentially have significant importance in applications such as defence, search and rescue mining or intelligent manufacturing. However, the effective use of multiple autonomous systems requires that an understanding be developed of the mechanisms of coordination and cooperation between component systems in pursuit of a common goal. A fundamental, quantitative, understanding of coordination and cooperation between decentralised autonomous systems is the main goal of this thesis. This thesis focuses on the problem of coordination and cooperation for teams of autonomous systems engaged in information gathering and data fusion tasks. While this is a subset of the general cooperative autonomous systems problem, it still encompasses a range of possible applications in picture compilation, navigation, searching and map building problems. The great advantage of restricting the domain of interest in this way is that an underlying mathematical model for coordination and cooperation can be based on the use of information-theoretic models of platform and sensor abilities. The information theoretic approach builds on the established principles and architecture previously developed for decentralised data fusion systems. In the decentralised control problem addressed in this thesis, each platform and sensor system is considered to be a distinct decision maker with an individual information-theoretic utility measure capturing both local objectives and the inter-dependencies among the decisions made by other members of the team. Together these information-theoretic utilities constitute the team objective. The key contributions of this thesis lie in the quantification and study of cooperative control between sensors and platforms using information as a common utility measure. In particular, * The problem of information gathering is formulated as an optimal control problem by identifying formal measures of information with utility or pay-off. * An information-theoretic utility model of coupling and coordination between decentralised decision makers is elucidated. This is used to describe how the information gathering strategies of a team of autonomous systems are coupled. * Static and dynamic information structures for team members are defined. It is shown that the use of static information structures can lead to efficient, although sub-optimal, decentralised control strategies for the team. * Significant examples in decentralised control of a team of sensors are developed. These include the multi-vehicle multi-target bearings-only tracking problem, and the area coverage or exploration problem for multiple vehicles. These examples demonstrate the range of non-trivial problems to which the theory in this thesis can be employed.
|
2 |
Information-Theoretic Control of Multiple Sensor PlatformsGrocholsky, Ben January 2002 (has links)
This thesis is concerned with the development of a consistent, information-theoretic basis for understanding of coordination and cooperation decentralised multi-sensor multi-platform systems. Autonomous systems composed of multiple sensors and multiple platforms potentially have significant importance in applications such as defence, search and rescue mining or intelligent manufacturing. However, the effective use of multiple autonomous systems requires that an understanding be developed of the mechanisms of coordination and cooperation between component systems in pursuit of a common goal. A fundamental, quantitative, understanding of coordination and cooperation between decentralised autonomous systems is the main goal of this thesis. This thesis focuses on the problem of coordination and cooperation for teams of autonomous systems engaged in information gathering and data fusion tasks. While this is a subset of the general cooperative autonomous systems problem, it still encompasses a range of possible applications in picture compilation, navigation, searching and map building problems. The great advantage of restricting the domain of interest in this way is that an underlying mathematical model for coordination and cooperation can be based on the use of information-theoretic models of platform and sensor abilities. The information theoretic approach builds on the established principles and architecture previously developed for decentralised data fusion systems. In the decentralised control problem addressed in this thesis, each platform and sensor system is considered to be a distinct decision maker with an individual information-theoretic utility measure capturing both local objectives and the inter-dependencies among the decisions made by other members of the team. Together these information-theoretic utilities constitute the team objective. The key contributions of this thesis lie in the quantification and study of cooperative control between sensors and platforms using information as a common utility measure. In particular, * The problem of information gathering is formulated as an optimal control problem by identifying formal measures of information with utility or pay-off. * An information-theoretic utility model of coupling and coordination between decentralised decision makers is elucidated. This is used to describe how the information gathering strategies of a team of autonomous systems are coupled. * Static and dynamic information structures for team members are defined. It is shown that the use of static information structures can lead to efficient, although sub-optimal, decentralised control strategies for the team. * Significant examples in decentralised control of a team of sensors are developed. These include the multi-vehicle multi-target bearings-only tracking problem, and the area coverage or exploration problem for multiple vehicles. These examples demonstrate the range of non-trivial problems to which the theory in this thesis can be employed.
|
3 |
A Study of Communication Link Removal in Static and Dynamic TeamsAgarwal, Akash January 2017 (has links)
No description available.
|
4 |
DOES UPPER ECHELONS TEAM DYNAMIC MATTER? THE CRITICALITY OF EXECUTIVE TEAM BEHAVIOR IN ECONOMIC VALUE CREATIONCharas, Solange 11 June 2014 (has links)
No description available.
|
Page generated in 0.0502 seconds