• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • Tagged with
  • 10
  • 10
  • 10
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The First Data Release of the Beijing-Arizona Sky Survey

Zou, Hu, Zhang, Tianmeng, Zhou, Zhimin, Nie, Jundan, Peng, Xiyan, Zhou, Xu, Jiang, Linhua, Cai, Zheng, Dey, Arjun, Fan, Xiaohui, Fan, Dongwei, Guo, Yucheng, He, Boliang, Jiang, Zhaoji, Lang, Dustin, Lesser, Michael, Li, Zefeng, Ma, Jun, Mao, Shude, McGreer, Ian, Schlegel, David, Shao, Yali, Wang, Jiali, Wang, Shu, Wu, Jin, Wu, Xiaohan, Yang, Qian, Yue, Minghao 05 June 2017 (has links)
The Beijing-Arizona Sky Survey (BASS) is a new wide-field legacy imaging survey in the northern Galactic cap using the 2.3 m Bok telescope. The survey will cover about 5400 deg(2) in the g and r bands, and the expected 5 sigma depths (corrected for the Galactic extinction) in these two bands are g = 24.0 and r = 23.4 mag (AB magnitude). BASS started observations in 2015 January. and had. completed about 41% of the. area as of 2016 July. The first data release contains calibrated images obtained in 2015 and 2016 and their corresponding single-epoch. and coadded catalogs. The actual depths of the. single-epoch images are g similar to 23.4 and r similar to 22.9 mag. The full depths of the. three epochs are g similar to 24.1 and r similar to 23.5 mag.
2

First Scattered-light Images of the Gas-rich Debris Disk around 49 Ceti

Choquet, Élodie, Milli, Julien, Wahhaj, Zahed, Soummer, Rémi, Roberge, Aki, Augereau, Jean-Charles, Booth, Mark, Absil, Olivier, Boccaletti, Anthony, Chen, Christine H., Debes, John H., Burgo, Carlos del, Dent, William R. F., Ertel, Steve, Girard, Julien H., Gofas-Salas, Elena, Golimowski, David A., González, Carlos A. Gómez, Hagan, J. Brendan, Hibon, Pascale, Hines, Dean C., Kennedy, Grant M., Lagrange, Anne-Marie, Matrà, Luca, Mawet, Dimitri, Mouillet, David, N’Diaye, Mamadou, Perrin, Marshall D., Pinte, Christophe, Pueyo, Laurent, Rajan, Abhijith, Schneider, Glenn, Wolff, Schuyler, Wyatt, Mark 09 January 2017 (has links)
We present the first scattered-light images of the debris disk around 49 Ceti, a similar to 40 Myr A1 main-sequence star at 59 pc, famous for hosting two massive dust belts as well as large quantities of atomic and molecular gas. The outer disk is revealed in reprocessed archival Hubble Space Telescope NICMOS-F110W images, as well as new coronagraphic H-band images from the Very Large Telescope SPHERE instrument. The disk extends from 1 1 (65 au) to 4.'' 6 (250 au) and is seen at an inclination of 73 degrees, which refines previous measurements at lower angular resolution. We also report no companion detection larger than 3 M-Jup at projected separations beyond 20 au from the star (0.'' 34). Comparison between the F110W and H-band images is consistent with a gray color of 49 Ceti's dust, indicating grains larger than greater than or similar to 2 mu m. Our photometric measurements indicate a scattering efficiency/infrared excess ratio of 0.2-0.4, relatively low compared to other characterized debris disks. We find that 49 Ceti presents morphological and scattering properties very similar to the gas-rich HD 131835 system. From our constraint on the disk inclination we find that the atomic gas previously detected in absorption must extend to the inner disk, and that the latter must be depleted of CO gas. Building on previous studies, we propose a schematic view of the system describing the dust and gas structure around 49 Ceti and hypothetical scenarios for the gas nature and origin.
3

THE ORBIT AND TRANSIT PROSPECTS FOR β PICTORIS b CONSTRAINED WITH ONE MILLIARCSECOND ASTROMETRY

Wang, Jason J., Graham, James R., Pueyo, Laurent, Kalas, Paul, Millar-Blanchaer, Maxwell A., Ruffio, Jean-Baptiste, Rosa, Robert J. De, Ammons, S. Mark, Arriaga, Pauline, Bailey, Vanessa P., Barman, Travis S., Bulger, Joanna, Burrows, Adam S., Cardwell, Andrew, Chen, Christine H., Chilcote, Jeffrey K., Cotten, Tara, Fitzgerald, Michael P., Follette, Katherine B., Doyon, René, Duchêne, Gaspard, Greenbaum, Alexandra Z., Hibon, Pascale, Hung, Li-Wei, Ingraham, Patrick, Konopacky, Quinn M., Larkin, James E., Macintosh, Bruce, Maire, Jérôme, Marchis, Franck, Marley, Mark S., Marois, Christian, Metchev, Stanimir, Nielsen, Eric L., Oppenheimer, Rebecca, Palmer, David W., Patel, Rahul, Patience, Jenny, Perrin, Marshall D., Poyneer, Lisa A., Rajan, Abhijith, Rameau, Julien, Rantakyrö, Fredrik T., Savransky, Dmitry, Sivaramakrishnan, Anand, Song, Inseok, Soummer, Remi, Thomas, Sandrine, Vasisht, Gautam, Vega, David, Wallace, J. Kent, Ward-Duong, Kimberly, Wiktorowicz, Sloane J., Wolff, Schuyler G. 03 October 2016 (has links)
A principal scientific goal of the Gemini Planet Imager (GPI) is obtaining milliarcsecond astrometry to constrain exoplanet orbits. However, astrometry of directly imaged exoplanets is subject to biases, systematic errors, and speckle noise. Here, we describe an analytical procedure to forward model the signal of an exoplanet that accounts for both the observing strategy (angular and spectral differential imaging) and the data reduction method (Karhunen-Loeve Image Projection algorithm). We use this forward model to measure the position of an exoplanet in a Bayesian framework employing Gaussian processes and Markov-chain Monte Carlo to account for correlated noise. In the case of GPI data on beta Pic b, this technique, which we call Bayesian KLIP-FM Astrometry (BKA), outperforms previous techniques and yields 1 sigma errors at or below the one milliarcsecond level. We validate BKA by fitting a Keplerian orbit to 12 GPI observations along with previous astrometry from other instruments. The statistical properties of the residuals confirm that BKA is accurate and correctly estimates astrometric errors. Our constraints on the orbit of beta Pic b firmly rule out the possibility of a transit of the planet at 10-sigma significance. However, we confirm that the Hill sphere of beta Pic b will transit, giving us a rare chance to probe the circumplanetary environment of a young, evolving exoplanet. We provide an ephemeris for photometric monitoring of the Hill sphere transit event, which will begin at the start of April in 2017 and finish at the end of January in 2018.
4

Improving and Assessing Planet Sensitivity of the GPI Exoplanet Survey with a Forward Model Matched Filter

Ruffio, Jean-Baptiste, Macintosh, Bruce, Wang, Jason J., Pueyo, Laurent, Nielsen, Eric L., Rosa, Robert J. De, Czekala, Ian, Marley, Mark S., Arriaga, Pauline, Bailey, Vanessa P., Barman, Travis, Bulger, Joanna, Chilcote, Jeffrey, Cotten, Tara, Doyon, Rene, Duchene, Gaspard, Fitzgerald, Michael P., Follette, Katherine B., Gerard, Benjamin L., Goodsell, Stephen J., Graham, James R., Greenbaum, Alexandra Z., Hibon, Pascale, Hung, Li-Wei, Ingraham, Patrick, Kalas, Paul, Konopacky, Quinn, Larkin, James E., Maire, Jerome, Marchis, Franck, Marois, Christian, Metchev, Stanimir, Millar-Blanchaer, Maxwell A., Morzinski, Katie M., Oppenheimer, Rebecca, Palmer, David, Patience, Jennifer, Perrin, Marshall, Poyneer, Lisa, Rajan, Abhijith, Rameau, Julien, Rantakyro, Fredrik T., Savransky, Dmitry, Schneider, Adam C., Sivaramakrishnan, Anand, Song, Inseok, Soummer, Remi, Thomas, Sandrine, Wallace, J. Kent, Ward-Duong, Kimberly, Wiktorowicz, Sloane, Wolff, Schuyler 07 June 2017 (has links)
We present a new matched-filter algorithm for direct detection of point sources in the immediate vicinity of bright stars. The stellar point-spread function (PSF) is first subtracted using a Karhunen-Love image processing (KLIP) algorithm with angular and spectral differential imaging (ADI and SDI). The KLIP-induced distortion of the astrophysical signal is included in the matched-filter template by computing a forward model of the PSF at every position in the image. To optimize the performance of the algorithm, we conduct extensive planet injection and recovery tests and tune the exoplanet spectra template and KLIP reduction aggressiveness to maximize the signalto- noise ratio (S/N) of the recovered planets. We show that only two spectral templates are necessary to recover any young Jovian exoplanets with minimal S/N loss. We also developed a complete pipeline for the automated detection of point-source candidates, the calculation of receiver operating characteristics (ROC), contrast curves based on. false positives, and completeness contours. We process in a uniform manner more than 330 data sets from the Gemini Planet Imager Exoplanet Survey and assess GPI typical sensitivity as a function of the star and the hypothetical companion spectral type. This work allows for the first time a comparison of different detection algorithms at a survey scale accounting for both planet completeness and false-positive rate. We show that the new forward model matched filter allows the detection of 50% fainter objects than a conventional cross-correlation technique with a Gaussian PSF template for the same false-positive rate.
5

HD 104860 and HD 192758: Two Debris Disks Newly Imaged in Scattered Light with the Hubble Space Telescope

Choquet, É., Bryden, G., Perrin, M. D., Soummer, R., Augereau, J.-C., Chen, C. H., Debes, J. H., Gofas-Salas, E., Hagan, J. B., Hines, D. C., Mawet, D., Morales, F., Pueyo, L., Rajan, A., Ren, B., Schneider, G., Stark, C. C., Wolff, S. 12 February 2018 (has links)
We present the first scattered-light images of two debris disks around the F8 star HD. 104860 and the F0V star HD. 192758, respectively similar to 45 and similar to 67. pc away. We detected these systems in the F110W and F160W filters through our reanalysis of archival Hubble Space Telescope (HST) NICMOS data with modern starlight-subtraction techniques. Our image of HD. 104860 confirms the morphology previously observed by Herschel in thermal emission with a well-defined ring at a radius of similar to 114. au inclined by similar to 58 degrees. Although the outer edge profile is consistent with dynamical evolution models, the sharp inner edge suggests sculpting by unseen perturbers. Our images of HD. 192758 reveal a disk at radius similar to 95. au inclined by similar to 59 degrees, never resolved so far. These disks have low scattering albedos of 10% and 13%, respectively, inconsistent with water ice grain compositions. They are reminiscent of several other disks with similar inclination and scattering albedos: Fomalhaut, HD. 92945, HD. 202628, and HD. 207129. They are also very distinct from brighter disks in the same inclination bin, which point to different compositions between these two populations. Varying scattering albedo values can be explained by different grain porosities, chemical compositions, or grain size distributions, which may indicate distinct formation mechanisms or dynamical processes at work in these systems. Finally, these faint disks with large infrared excesses may be representative of an underlying population of systems with low albedo values. Searches with more sensitive instruments on HST or on the James Webb Space Telescope and using state-of-the art starlight-subtraction methods may help discover more of such faint systems.
6

High Contrast Imaging in the Visible: First Experimental Results at the Large Binocular Telescope

Pedichini, F., Stangalini, M., Ambrosino, F., Puglisi, A., Pinna, E., Bailey, V., Carbonaro, L., Centrone, M., Christou, J., Esposito, S., Farinato, J., Fiore, F., Giallongo, E., Hill, J. M., Hinz, P. M., Sabatini, and L. 28 July 2017 (has links)
In 2014 February, the System for High contrast And coronography from R to K at VISual bands (SHARK-VIS) Forerunner, a high contrast experimental imager operating at visible wavelengths, was installed at the Large Binocular Telescope (LBT). Here we report on the first results obtained by recent on-sky tests. These results show the extremely good performance of the LBT Extreme Adaptive Optics (ExAO) system at visible wavelengths, both in terms of spatial resolution and contrast achieved. Similarly to what was done by Amara & Quanz (2012), we used the SHARK-VIS Forerunner data to quantitatively assess the contrast enhancement. This is done by injecting several different synthetic faint objects in the acquired data and applying the angular differential imaging (ADI) technique. A contrast of the order of 5 x 10(-5) is obtained at 630 nm for angular separations from the star larger than 100 mas. These results are discussed in light of the future development of SHARK-VIS and compared to those obtained by other high contrast imagers operating at similar wavelengths.
7

VIP: Vortex Image Processing Package for High-contrast Direct Imaging

Gomez Gonzalez, Carlos Alberto, Wertz, Olivier, Absil, Olivier, Christiaens, Valentin, Defrère, Denis, Mawet, Dimitri, Milli, Julien, Absil, Pierre-Antoine, Van Droogenbroeck, Marc, Cantalloube, Faustine, Hinz, Philip M., Skemer, Andrew J., Karlsson, Mikael, Surdej, Jean 12 June 2017 (has links)
We present the Vortex Image Processing (VIP) library, a python package dedicated to astronomical high-contrast imaging. Our package relies on the extensive python stack of scientific libraries and aims to provide a flexible framework for high-contrast data and image processing. In this paper, we describe the capabilities of VIP related to processing image sequences acquired using the angular differential imaging (ADI) observing technique. VIP implements functionalities for building high-contrast data processing pipelines, encompassing pre- and post-processing algorithms, potential source. position and flux estimation, and sensitivity curve. generation. Among the reference point-spread. function subtraction techniques for ADI post-processing, VIP includes several flavors of principal component analysis (PCA) based algorithms, such as annular PCA and incremental PCA algorithms capable of processing big datacubes (of several gigabytes) on a computer with limited memory. Also, we present a novel ADI algorithm based on non-negative matrix factorization, which comes from the same family of low-rank matrix approximations as PCA and provides fairly similar results. We showcase the ADI capabilities of the VIP library using a deep sequence on HR 8799 taken with the LBTI/LMIRCam and its recently commissioned L-band vortex coronagraph. Using VIP, we investigated the presence of additional companions around HR 8799 and did not find any significant additional point source beyond the four known planets. VIP is available at http://github. com/vortex-exoplanet/VIP and is accompanied with Jupyter notebook tutorials illustrating the main functionalities of the library.
8

Evidence That the Directly Imaged Planet HD 131399 Ab Is a Background Star

Nielsen, Eric L., Rosa, Robert J. De, Rameau, Julien, Wang, Jason J., Esposito, Thomas M., Millar-Blanchaer, Maxwell A., Marois, Christian, Vigan, Arthur, Ammons, S. Mark, Artigau, Etienne, Bailey, Vanessa P., Blunt, Sarah, Bulger, Joanna, Chilcote, Jeffrey, Cotten, Tara, Doyon, René, Duchêne, Gaspard, Fabrycky, Daniel, Fitzgerald, Michael P., Follette, Katherine B., Gerard, Benjamin L., Goodsell, Stephen J., Graham, James R., Greenbaum, Alexandra Z., Hibon, Pascale, Hinkley, Sasha, Hung, Li-Wei, Ingraham, Patrick, Jensen-Clem, Rebecca, Kalas, Paul, Konopacky, Quinn, Larkin, James E., Macintosh, Bruce, Maire, Jérôme, Marchis, Franck, Metchev, Stanimir, Morzinski, Katie M., Murray-Clay, Ruth A., Oppenheimer, Rebecca, Palmer, David, Patience, Jennifer, Perrin, Marshall, Poyneer, Lisa, Pueyo, Laurent, Rafikov, Roman R., Rajan, Abhijith, Rantakyrö, Fredrik T., Ruffio, Jean-Baptiste, Savransky, Dmitry, Schneider, Adam C., Sivaramakrishnan, Anand, Song, Inseok, Soummer, Remi, Thomas, Sandrine, Wallace, J. Kent, Ward-Duong, Kimberly, Wiktorowicz, Sloane, Wolff, Schuyler 07 November 2017 (has links)
We present evidence that the recently discovered, directly imaged planet HD 131399 Ab is a background star with nonzero proper motion. From new JHK1L' photometry and spectroscopy obtained with the Gemini Planet Imager, VLT/SPHERE, and Keck/NIRC2, and a reanalysis of the discovery data obtained with VLT/SPHERE, we derive colors, spectra, and astrometry for HD 131399 Ab. The broader wavelength coverage and higher data quality allow us to reinvestigate its status. Its near-infrared spectral energy distribution excludes spectral types later than L0 and is consistent with a K or M dwarf, which are the most likely candidates for a background object in this direction at the apparent magnitude observed. If it were a physically associated object, the projected velocity of HD 131399 Ab would exceed escape velocity given the mass and distance to HD 131399 A. We show that HD 131399 Ab is also not following the expected track for a stationary background star at infinite distance. Solving for the proper motion and parallax required to explain the relative motion of HD 131399 Ab, we find a proper motion of 12.3 mas yr(-1). When compared to predicted background objects drawn from a galactic model, we find this proper motion to be high but consistent with the top 4% fastest-moving background stars. From our analysis, we conclude that HD 131399 Ab is a background K or M dwarf.
9

Data Reduction and Image Reconstruction Techniques for Non-redundant Masking

Sallum, S., Eisner, J. 16 November 2017 (has links)
The technique of non-redundant masking (NRM) transforms a conventional telescope into an interferometric array. In practice, this provides a much better constrained point-spread function than a filled aperture and thus higher resolution than traditional imaging methods. Here, we describe an NRM data reduction pipeline. We discuss strategies for NRM observations regarding dithering patterns and calibrator selection. We describe relevant image calibrations and use example Large Binocular Telescope data sets to show their effects on the scatter in the Fourier measurements. We also describe the various ways to calculate Fourier quantities, and discuss different calibration strategies. We present the results of image reconstructions from simulated observations where we adjust prior images, weighting schemes, and error bar estimation. We compare two imaging algorithms and discuss implications for reconstructing images from real observations. Finally, we explore how the current state of the art compares to next-generation Extremely Large Telescopes.
10

CHARA/MIRC Observations of Two M supergiants in Perseus OB1: Temperature, Bayesian Modeling, and Compressed Sensing Imaging

Baron, F., Monnier, J. D., Kiss, L. L., Neilson, H. R., Zhao, M., Anderson, M., Aarnio, A., Pedretti, E., Thureau, N., Ten Brummelaar, T. A., Ridgway, S. T., McAlister, H. A., Sturmann, J., Sturmann, L., Turner, N. 10 April 2014 (has links)
Two red supergiants (RSGs) of the Per OB1 association, RS Per and T Per, have been observed in the H band using the Michigan Infra-Red Combiner (MIRC) instrument at the CHARA array. The data show clear evidence of a departure from circular symmetry. We present here new techniques specially developed to analyze such cases, based on state-of-the-art statistical frameworks. The stellar surfaces are first modeled as limb-darkened disks based on SATLAS models that fit both MIRC interferometric data and publicly available spectrophotometric data. Bayesian model selection is then used to determine the most probable number of spots. The effective surface temperatures are also determined and give further support to the recently derived hotter temperature scales of RSGs. The stellar surfaces are reconstructed by our model-independent imaging code SQUEEZE, making use of its novel regularizer based on Compressed Sensing theory. We find excellent agreement between the model-selection results and the reconstructions. Our results provide evidence for the presence of near-infrared spots representing about 3%-5% of the stellar flux.

Page generated in 0.1009 seconds