• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

HAT-P-67b: An Extremely Low Density Saturn Transiting an F-subgiant Confirmed via Doppler Tomography

Zhou, G., Bakos, G. Á., Hartman, J. D., Latham, D. W., Torres, G., Bhatti, W., Penev, K., Buchhave, L., Kovács, G., Bieryla, A., Quinn, S., Isaacson, H., Fulton, B. J., Falco, E., Csubry, Z., Everett, M., Szklenar, T., Esquerdo, G., Berlind, P., Calkins, M. L., Béky, B., Knox, R. P., Hinz, P., Horch, E. P., Hirsch, L., Howell, S. B., Noyes, R. W., Marcy, G., Val-Borro, M. de, Lázár, J., Papp, I., Sári, P. 13 April 2017 (has links)
We report the discovery of HAT-P-67b, which is a hot-Saturn transiting a rapidly rotating F-subgiant. HAT-P-67b has a radius of = R-p 2.085(-0.071)(+0.096) R-J, and orbites a M-* = 1.642(-0.072)(+0.155)M(circle dot) , R-* = 2.546(-0.084)(+0.099) R-circle dot host star in a similar to 4.81 day period orbit. We place an upper limit on the mass of the planet via radial velocity measurements to be M-p < 0.59 M-J , and a lower limit of >0.056 M-J by limitations on Roche lobe overflow. Despite being a subgiant, the host star still exhibits relatively rapid rotation, with a projected rotational velocity of vsin I-* = 35.8 +/- 1.1 km s(-1), which makes it difficult to precisely determine the mass of the planet using radial velocities. We validated HAT-P-67b via two Doppler tomographic detections of the planetary transit, which eliminate potential eclipsing binary blend scenarios. The Doppler tomographic observations also confirm that HAT-P-67b has an orbit that is aligned to within 12 degrees, in projection, with the spin of its host star. HAT-P-67b receives strong UV irradiation and is among one of the lowest density planets known, which makes it a good candidate for future UV transit observations in the search for an extended hydrogen exosphere.

Page generated in 0.0632 seconds