• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 1
  • Tagged with
  • 8
  • 8
  • 8
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Gerador de sinais para aplicação da espectroscopia de bioimpedânica elétrica na detecção de câncer. / Signal generator for applying electrical bioimpendance spectroscopy in cancer detection.

Amaya Palacio, Jose Alejandro 01 June 2017 (has links)
No intervalo de valores de frequência de poucos kHz até 1 MHz, nomeado às vezes como região de dispersão ?, as estruturas das células são o principal determinante da impedância do tecido. Esse é o fundamento básico da Espectroscopia da Bioimpedância Elétrica - EBE, a qual tem importância significativa como ferramenta de diagnóstico do câncer de colo no útero - CCU. A EBE consiste na medição de impedância elétrica do tecido cervical para diferentes valores de frequência. A diferença do comportamento no valor da impedância na frequência entre o tecido normal e o cancerígeno é usada para detectar o nível de neoplasia. Um bloco importante do Sistema EBE é o bloco gerador de sinal, o qual está composto principalmente de: a) Oscilador Controlado Numericamente - NCO, b) Conversor Digital - Analógico - DAC e c) Fonte de Corrente Controlada por Tensão - VCCS. O Objetivo do presente trabalho foi o projeto dos blocos principais do Gerador de Sinal para aplicação da Espectroscopia da Bioimpedância Elétrica na Detecção do Câncer no colo do Útero. O Gerador de Sinal é composto de: Oscilador Controlado Numericamente baseado no algoritmo de CORDIC, Conversor Digital - Analógico de 10 bits e Fonte de Corrente Controlada por Tensão. É apresentado o projeto do Oscilador Controlado Numericamente (NCO) de 10 bits baseado na arquitetura iterativa do CORDIC e otimizado em termos da área. O NCO foi implementado na Tecnologia CMOS do Processo da TSMC 180 nm por meio do FREE MINI@SIC IMEC-TSMC 2015. As especificações do projeto foram obtidas dos requerimentos da aplicação da Espectroscopia da Bioimpedância Elétrica - EBE na detecção do Câncer no Colo do Útero - CCU. A arquitetura proposta é composta fundamentalmente de: seletor de frequência de 5 bits, gerador do valor angular, bloco de pré-rotação, unidade aritmética do CORDIC, Unidade de Controle e tabela de busca da referência para arco-tangente. A área do núcleo para este componente foi de 133µmx133µm, ou seja, 0,017689 mm². Foi configurado para gerar 32 valores de frequência de sinais sinusoidais no intervalo de valores de frequência de 100 Hz até 1 MHz com um erro máximo de 0,00623% entre os valores de frequência obtidos da simulação e os resultados experimentais. O Conversor Digital - Analógico foi projetado no nível do esquemático numa arquitetura Current-Steering Segmentada 6-4 com valores de DNL<0,1 LSB e INL<0,2 LSB obtidos na análise de corners. O circuito VCCS foi projetado, simulado e fabricado em Tecnologia CMOS da TSMC 130 nm com polarização de 1,3 V. A Fonte de Corrente de Howland proposta foi baseada no amplificador operacional auto polarizado complementar de cascode dobrado (SB-CFC). De acordo com os requerimentos do padrão internacional IEC:60601-1 o valor pico da corrente sinusoidal foi ajustado em 10 µA. De acordo com aplicação da EBE para a CCD, as especificações do SB-CFC-AO foram calculadas para obter uma corrente sinusoidal na faixa de frequência de 100 Hz até 1 MHz com impedância de saída maior do que 1 MOhm a 1 MHz de frequência. Foram executadas simulações post-layout e os principais resultados foram: 10±0,0035 µA para a amplitude na corrente de saída na faixa de frequência especificada com 5 kOhm de resistência de carga, valores de impedância de saída maiores do 1,6 MOhm a 1 MHz; variações na amplitude da corrente de saída menores do que 0,4% para impedância de carga de 10 Ohm até 5 kOhm. O resultado experimental em termos de não-linearidade apresentou o máximo de 2% da plena escala. De acordo com os resultados obtidos, o desempenho do VCCS é adequado para aplicações da EBE na CCD. / In the frequency range of a few kHz to 1 MHz, sometimes referred to as the ? dispersion region, cell structures are the main determinant of tissue impedance. That is a basic fundamental of Electrical Bio-Impedance Spectroscopy - EBS, which has a significant importance as a diagnostic tool for Cervical Cancer Detection - CCD. EBS consists in the measurements of Electrical Impedance of cervical tissue at different values of frequency. The difference of behavior of impedance value in the frequency of normal tissue and cancerous tissue is used to detect the level of neoplasia. An important block of EBS System is the block signal generator, which is mainly composed of: a) Numerically Controlled Oscillator - NCO, b) Digital to Analog Converter - DAC and c) Voltage Controlled Current Source - VCCS. The aims of this work was to design the main blocks of a Signal Generator for Electrical Bio-Impedance Spectroscopy applied to Cervical Cancer Detection. The signal generator is composed by: CORDIC-Based Numerically Controlled Oscillator, 10-bits Digital-to-Analog Converter and Voltage Controlled Current Source - VCCS. A 10-bit Numerically Controlled Oscillator (NCO) based on the iterative architecture of COordinate Rotation DIgital Computer (CORDIC) optimized in terms of area is presented. The NCO was implemented in a TSMC CMOS 180 nm technology process on the FREE MINI@SIC IMEC-TSMC. The design specifications were obtained from the requirements for application of Electrical Bio-Impedance Spectroscopy (EBS) to Cervical Cancer Detection (CCD). The proposed architecture is basically composed by: 5-bit frequency selector, angle generator, pre-rotator block, CORDIC Arithmetic Unit, Control Unit and lookup table for arctangent reference. The area of this IC for the CORE circuit was 133µm X 133µm, i.e. 0,017689 mm². It was configured in order to generate 32 different frequencies for output sinusoidal signals in the frequency range of 100Hz up to 1MHz with maximum error of 0,00623% in frequency values obtained of comparison of theoretical and experimental results. The 10 bits DAC was implemented in a 6-to-4 Current Steering Segmented architecture with DNL<0,1 LSB and INL<0,2LSB obtained from corners analysis. The circuit VCCS was designed, simulated and fabricated in TSMC 130 nm CMOS technology at 1.3V power supply. The proposed Howland Current Source is based on Self-Biased Complementary Folded Cascode (SB-CFC) Operational Amplifier (OA). Complying with the requirements for medical electrical equipment of international standard ABNT-NBR-IEC-60601-1 the sinusoidal current peak amplitude was settled at 10 µA. In accordance with the requirements of the EBS for CCD, the specifications for the SB-CFC-OA were calculated to meet the 100 Hz to 1 MHz frequency range for the sinusoidal output current and the output impedance higher than 1 MOhm at 1 MHz frequency. Post-layout simulations were run and the main results were: 10 ± 0.0335 µA for the output current peak amplitude over the specified frequency range and with 5 kOhm load impedance; values above 1.6 MOhm output impedance @ 1 MHz; nominal current amplitude variations lower than 0.4% for load impedances in the range of 10 Ohm up to 5 kOhm. And the experimental result for maximum non-linearity was 2% of full scale. From these results, the performance of the VCCS is adequate for EBS-CCD applications.
2

Gerador de sinais para aplicação da espectroscopia de bioimpedânica elétrica na detecção de câncer. / Signal generator for applying electrical bioimpendance spectroscopy in cancer detection.

Jose Alejandro Amaya Palacio 01 June 2017 (has links)
No intervalo de valores de frequência de poucos kHz até 1 MHz, nomeado às vezes como região de dispersão ?, as estruturas das células são o principal determinante da impedância do tecido. Esse é o fundamento básico da Espectroscopia da Bioimpedância Elétrica - EBE, a qual tem importância significativa como ferramenta de diagnóstico do câncer de colo no útero - CCU. A EBE consiste na medição de impedância elétrica do tecido cervical para diferentes valores de frequência. A diferença do comportamento no valor da impedância na frequência entre o tecido normal e o cancerígeno é usada para detectar o nível de neoplasia. Um bloco importante do Sistema EBE é o bloco gerador de sinal, o qual está composto principalmente de: a) Oscilador Controlado Numericamente - NCO, b) Conversor Digital - Analógico - DAC e c) Fonte de Corrente Controlada por Tensão - VCCS. O Objetivo do presente trabalho foi o projeto dos blocos principais do Gerador de Sinal para aplicação da Espectroscopia da Bioimpedância Elétrica na Detecção do Câncer no colo do Útero. O Gerador de Sinal é composto de: Oscilador Controlado Numericamente baseado no algoritmo de CORDIC, Conversor Digital - Analógico de 10 bits e Fonte de Corrente Controlada por Tensão. É apresentado o projeto do Oscilador Controlado Numericamente (NCO) de 10 bits baseado na arquitetura iterativa do CORDIC e otimizado em termos da área. O NCO foi implementado na Tecnologia CMOS do Processo da TSMC 180 nm por meio do FREE MINI@SIC IMEC-TSMC 2015. As especificações do projeto foram obtidas dos requerimentos da aplicação da Espectroscopia da Bioimpedância Elétrica - EBE na detecção do Câncer no Colo do Útero - CCU. A arquitetura proposta é composta fundamentalmente de: seletor de frequência de 5 bits, gerador do valor angular, bloco de pré-rotação, unidade aritmética do CORDIC, Unidade de Controle e tabela de busca da referência para arco-tangente. A área do núcleo para este componente foi de 133µmx133µm, ou seja, 0,017689 mm². Foi configurado para gerar 32 valores de frequência de sinais sinusoidais no intervalo de valores de frequência de 100 Hz até 1 MHz com um erro máximo de 0,00623% entre os valores de frequência obtidos da simulação e os resultados experimentais. O Conversor Digital - Analógico foi projetado no nível do esquemático numa arquitetura Current-Steering Segmentada 6-4 com valores de DNL<0,1 LSB e INL<0,2 LSB obtidos na análise de corners. O circuito VCCS foi projetado, simulado e fabricado em Tecnologia CMOS da TSMC 130 nm com polarização de 1,3 V. A Fonte de Corrente de Howland proposta foi baseada no amplificador operacional auto polarizado complementar de cascode dobrado (SB-CFC). De acordo com os requerimentos do padrão internacional IEC:60601-1 o valor pico da corrente sinusoidal foi ajustado em 10 µA. De acordo com aplicação da EBE para a CCD, as especificações do SB-CFC-AO foram calculadas para obter uma corrente sinusoidal na faixa de frequência de 100 Hz até 1 MHz com impedância de saída maior do que 1 MOhm a 1 MHz de frequência. Foram executadas simulações post-layout e os principais resultados foram: 10±0,0035 µA para a amplitude na corrente de saída na faixa de frequência especificada com 5 kOhm de resistência de carga, valores de impedância de saída maiores do 1,6 MOhm a 1 MHz; variações na amplitude da corrente de saída menores do que 0,4% para impedância de carga de 10 Ohm até 5 kOhm. O resultado experimental em termos de não-linearidade apresentou o máximo de 2% da plena escala. De acordo com os resultados obtidos, o desempenho do VCCS é adequado para aplicações da EBE na CCD. / In the frequency range of a few kHz to 1 MHz, sometimes referred to as the ? dispersion region, cell structures are the main determinant of tissue impedance. That is a basic fundamental of Electrical Bio-Impedance Spectroscopy - EBS, which has a significant importance as a diagnostic tool for Cervical Cancer Detection - CCD. EBS consists in the measurements of Electrical Impedance of cervical tissue at different values of frequency. The difference of behavior of impedance value in the frequency of normal tissue and cancerous tissue is used to detect the level of neoplasia. An important block of EBS System is the block signal generator, which is mainly composed of: a) Numerically Controlled Oscillator - NCO, b) Digital to Analog Converter - DAC and c) Voltage Controlled Current Source - VCCS. The aims of this work was to design the main blocks of a Signal Generator for Electrical Bio-Impedance Spectroscopy applied to Cervical Cancer Detection. The signal generator is composed by: CORDIC-Based Numerically Controlled Oscillator, 10-bits Digital-to-Analog Converter and Voltage Controlled Current Source - VCCS. A 10-bit Numerically Controlled Oscillator (NCO) based on the iterative architecture of COordinate Rotation DIgital Computer (CORDIC) optimized in terms of area is presented. The NCO was implemented in a TSMC CMOS 180 nm technology process on the FREE MINI@SIC IMEC-TSMC. The design specifications were obtained from the requirements for application of Electrical Bio-Impedance Spectroscopy (EBS) to Cervical Cancer Detection (CCD). The proposed architecture is basically composed by: 5-bit frequency selector, angle generator, pre-rotator block, CORDIC Arithmetic Unit, Control Unit and lookup table for arctangent reference. The area of this IC for the CORE circuit was 133µm X 133µm, i.e. 0,017689 mm². It was configured in order to generate 32 different frequencies for output sinusoidal signals in the frequency range of 100Hz up to 1MHz with maximum error of 0,00623% in frequency values obtained of comparison of theoretical and experimental results. The 10 bits DAC was implemented in a 6-to-4 Current Steering Segmented architecture with DNL<0,1 LSB and INL<0,2LSB obtained from corners analysis. The circuit VCCS was designed, simulated and fabricated in TSMC 130 nm CMOS technology at 1.3V power supply. The proposed Howland Current Source is based on Self-Biased Complementary Folded Cascode (SB-CFC) Operational Amplifier (OA). Complying with the requirements for medical electrical equipment of international standard ABNT-NBR-IEC-60601-1 the sinusoidal current peak amplitude was settled at 10 µA. In accordance with the requirements of the EBS for CCD, the specifications for the SB-CFC-OA were calculated to meet the 100 Hz to 1 MHz frequency range for the sinusoidal output current and the output impedance higher than 1 MOhm at 1 MHz frequency. Post-layout simulations were run and the main results were: 10 ± 0.0335 µA for the output current peak amplitude over the specified frequency range and with 5 kOhm load impedance; values above 1.6 MOhm output impedance @ 1 MHz; nominal current amplitude variations lower than 0.4% for load impedances in the range of 10 Ohm up to 5 kOhm. And the experimental result for maximum non-linearity was 2% of full scale. From these results, the performance of the VCCS is adequate for EBS-CCD applications.
3

Diseño de un amplificador limitador cmos para velocidades en tecnologías submicrónicas

Ochoa Castillo, Sergio Pablo January 2018 (has links)
Este informe técnico propone el diseño de un bloque llamado Amplificador Limitador que se encuentra en los equipos que trabajan con fibra óptica o con altas tasas de transmision de datos y que estan integrados en una pastilla de silicio. El objetivo principal es aumentar el ancho de banda de un Amplificador Limitador mediante la aplicación de la técnica Inductive Peaking para lograr velocidades que corresponden a una portadora óptica OC-192 equivalente a 10 Gbps bajo el estándar SONET. Haciendo uso de tecnología CMOS con transistores de 130 nm de ancho de canal. A su vez se propone disminuir el consumo de potencia y el área ocupada en la pastilla de Silicio utilizando inductores activos y la eliminación de los capacitores de desacople DC entre etapas. Los resultados finales Post Layout demuestran que es posible extender el ancho de banda con las técnicas mencionadas anteriormente, reducir el consumo total y el área ocupada en la pastilla de Silicio y cumplir con las especificaciones técnicas requeridas. This technical report proposes the design of a block called Limiting Amplifier which is found in equipment that works with optical fiber or with high rates of data transmission and that are integrated in a silicon wafer. The main objective is to increase the bandwidth of a limiter amplifier by applying the Inductive Peaking technique to achieve speeds that correspond to an OC-192 optical carrier equivalent to 10 Gbps under the SONET standard, making use of CMOS technology with 130 nm channel width transistors. At the same time, it is proposed to reduce the power consumption and the area occupied in the chip using active inductors and the elimination of DC decoupling capacitors between stages. The final results of Post Layout show that it is possible to extend the bandwidth with the techniques mentioned above, reducing the total consumption and the area occupied in the silicon pellet and accomplishing with the required technical specifications.
4

Fonte de luz coerente na banda C de telecomunicações e uso em chips de Si3N4 / Coherent light source on C-band telecom and use on Si3N4 chips

Avila, Pablo Jaime Palacios 19 June 2018 (has links)
Os estados emaranhados da luz são de grande importância para protocolos de comunicação quântica. Uma das principais fontes que vem sendo estudada no Laboratório de Manipulação Coerente de Átomos e Luz - LMCAL é o oscilador paramétrico ótico (OPO) no qual, através de processos paramétricos não lineares de segunda e terceira ordem (x(2) e x(3)), são produzidos feixes intensos que apresentam correlações quânticas. Recentemente, o LMCAL vem explorando o processo de mistura de quatro ondas (fenômeno derivado da susceptibilidade de terceira ordem x(3)) como fonte geradora de feixes emaranhados. Inicialmente, foi realizado a partir de células de rubídio e agora, em colaboração com o grupo de pesquisa da Profa. Michal Lipson da Universidade de Columbia, em chips de nitreto de silício (Si3N4); permitindo assim possibilidades de modulação ultra-rápida, confinamento de luz em volumes muito reduzidos, além da ótica não-linear do OPO. O presente projeto visa estudar as propriedades quânticas da luz nos OPOs em chips de silício, permitindo que sistemas muito eficientes em informação clássica possam ser usados também para implementação de protocolos de informação quântica. / Entangled States of light beams are of great importance for quantum communication protocols. One of the most relevant source of such states which is being studied at the Laboratory of Coherent Manipulation of Atoms and Light - LMCAL (in portuguese) is the Optical Parametric Oscillator (OPO) which through second and third order nonlinear parametric processes (x(2) and x(3)) produces intense fields that have quantum correlations. Recently, LMCAL is exploring four-wave mixing (FWM), a third-order nonlinear parametric process, as a source of entangled beams. Initially, on rubidium cells and now, in collaboration with Prof. Michal Lipson from the Columbia University, on silicon nitride (Si3N4) chips; opening a new avenue for ultrafast modulation, light confinement in reduced light volumes, as well as the nonlinear optics of the OPO. This project is intended to study quantum properties of light of on-chip OPOs in order to achieve the integration of these highly efficient devices for implementations of quantum information protocols.
5

Projeto de um oscilador controlado por corrente com configuração em anel, tecnologia CMOS e melhoria no ruído de fase

Pereira, Marcos Vinicius Alves [UNESP] 30 August 2010 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:22:31Z (GMT). No. of bitstreams: 0 Previous issue date: 2010-08-30Bitstream added on 2014-06-13T19:27:59Z : No. of bitstreams: 1 pereira_mva_me_ilha.pdf: 1675496 bytes, checksum: e8bfb14cdd90155eb3c43096d4c160df (MD5) / Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) / Este trabalho apresenta um Oscilador Controlado por Corrente (CCO) com configuração em anel usando tecnologia CMOS, com melhorias na faixa de operação e ruído de fase. O oscilador proposto tem uma faixa de oscilação de 0,0989 GHz a 1,2 GHz com uma corrente de controle com um intervalo de 0,1 mA a 3 mA com uma potência dissipada de 11,8 mW. A arquitetura apresenta uma melhoria na fase de ruído de -7 dBc / Hz em relação a um oscilador em anel de três estágios (VCO), também apresentado neste trabalho. A estrutura proposta é baseada na mudança da entrada de controle do oscilador e também em modificações nas polarizações dos transistor de carga do estágio de atraso. Estas mudanças, além de aumentar a faixa de operação do oscilador e diminuir o efeito do ruído de fase, também reduzem a variação da amplitude do sinal de saída que acontece a medida que a frequência de operação aumenta ou diminui. Simulações realizadas com ambos os osciladores, confirmam os resultados. / This dissertation presents a Current Controlled Oscillator (CCO-Current-Controlled Oscillator) at ring configuration using CMOS (Complementary Metal-Oxide-Semiconductor) technology, with improvements in operating range and phase noise. The proposed oscillator has an oscillation range of 98.959 MHz to 1.2 GHz with a current control with a range of 0.1 mA to 3 mA with a power dissipation of 11.8 mW. The architecture shows an improvement in phase noise of -7 dBc / Hz when compared with a ring oscillator in three stages (VCO-Voltage- Controlled Oscillator), also presented in this paper. The proposed structure is in the change of input control and also in the polarizations of the load transistor stage of delay. These changes, in modifications increase the operations range of the oscillator, reduce the phase noise and minimize the amplitude variation of the output signal when the frequency operation increase or decrease. Simulations with both oscillators and their comparisons confirm these results.
6

Fonte de luz coerente na banda C de telecomunicações e uso em chips de Si3N4 / Coherent light source on C-band telecom and use on Si3N4 chips

Pablo Jaime Palacios Avila 19 June 2018 (has links)
Os estados emaranhados da luz são de grande importância para protocolos de comunicação quântica. Uma das principais fontes que vem sendo estudada no Laboratório de Manipulação Coerente de Átomos e Luz - LMCAL é o oscilador paramétrico ótico (OPO) no qual, através de processos paramétricos não lineares de segunda e terceira ordem (x(2) e x(3)), são produzidos feixes intensos que apresentam correlações quânticas. Recentemente, o LMCAL vem explorando o processo de mistura de quatro ondas (fenômeno derivado da susceptibilidade de terceira ordem x(3)) como fonte geradora de feixes emaranhados. Inicialmente, foi realizado a partir de células de rubídio e agora, em colaboração com o grupo de pesquisa da Profa. Michal Lipson da Universidade de Columbia, em chips de nitreto de silício (Si3N4); permitindo assim possibilidades de modulação ultra-rápida, confinamento de luz em volumes muito reduzidos, além da ótica não-linear do OPO. O presente projeto visa estudar as propriedades quânticas da luz nos OPOs em chips de silício, permitindo que sistemas muito eficientes em informação clássica possam ser usados também para implementação de protocolos de informação quântica. / Entangled States of light beams are of great importance for quantum communication protocols. One of the most relevant source of such states which is being studied at the Laboratory of Coherent Manipulation of Atoms and Light - LMCAL (in portuguese) is the Optical Parametric Oscillator (OPO) which through second and third order nonlinear parametric processes (x(2) and x(3)) produces intense fields that have quantum correlations. Recently, LMCAL is exploring four-wave mixing (FWM), a third-order nonlinear parametric process, as a source of entangled beams. Initially, on rubidium cells and now, in collaboration with Prof. Michal Lipson from the Columbia University, on silicon nitride (Si3N4) chips; opening a new avenue for ultrafast modulation, light confinement in reduced light volumes, as well as the nonlinear optics of the OPO. This project is intended to study quantum properties of light of on-chip OPOs in order to achieve the integration of these highly efficient devices for implementations of quantum information protocols.
7

Tecnologias para defasadores baseados em MEMS e linhas de transmissão de ondas lentas. / Technologies for phase shifters based on MEMS and slow-wave transmission lines.

Robert Aleksander Gavidia Bovadilla 05 July 2018 (has links)
O desenvolvimento deste trabalho foi motivado pela alta demanda de novas aplicações para o mercado do consumidor que necessitam de sistemas de transmissão e recepção de dados sem fio trabalhando na região de ondas milimétricas (mmW - entre 30 GHz e 300 GHz). Para estes tipos de sistemas, os defasadores são cruciais por definir o custo e o tamanho do dispositivo final. A pesquisa bibliográfica mostra que a melhor opção são os defasadores passivos do tipo linha carregada que utilizam Sistemas Microeletromecânicos (MEMS) como elemento de ajuste para a mudança de fase. Por esse motivo neste trabalho foi feito o estudo de diferentes tecnologias para o desenvolvimento de defasadores baseados em MEMS distribuídos e linhas de transmissão com efeito de ondas lentas de tipo shielded-CoPlanar Stripline (S-CPS) e shielded-Coplanar Waveguide (S-CPW). Foram estudadas três diferentes tecnologias: a tecnologia CMOS; a tecnologia dedicada desenvolvida pelo Laboratoire d\'électronique des technologies de l\'information (CEA-Leti) e a tecnologia in-house desenvolvida no Laboratório de Microeletrônica da Universidade de São Paulo. Utilizando a tecnologia CMOS foram fabricadas linhas de transmissão de tipo S-CPS utilizando a tecnologia de 250 nm da IHP (Innovations for High Performance Microelectronics) e a tecnologia de 0,35 µm da AMS (Austria Micro Systems). A tecnologia de 0,35 µm da AMS foi utilizada também para o desenvolvimento de defasadores de 2-bits e 3-bits baseados em linhas de transmissão de tipo S-CPW. Para estes defasadores foi definido um processo de liberação da camada de blindagem, reprodutível, que permitiu a atuação do dispositivo. Outros defasadores baseados em S-CPW que foram desenvolvidos anteriormente com a tecnologia dedicada CEA-LETI, foram modelados eletrostaticamente utilizando o Comsol MultiPhysics e o Ansys Workbench. Os modelos desenvolvidos permitiram entender o comportamento eletromecânico do defasador e foram utilizados reprojetar o defasador com um desempenho otimizado. Finalmente, visando o desenvolvimento dos dispositivos otimizados utilizando a tecnologia in house com os materiais e métodos disponíveis no Laboratório de Microeletrônica da USP (LME-USP), foram estudadas algumas etapas críticas do processo de fabricação. / The development of this work is motivated by the high demand for new applications for the consumer market that require wireless systems for data transmission and reception working in the millimeter wave region (mmW - between 30 GHz and 300 GHz). For these kinds of systems, the phase shifter are crucial to define the cost and size of the final device. The bibliographical research shows that the best option are the passive load line-type phase shifters using Microelectromechanical Systems (MEMS) as tuning element. Therefore, in this work, the study of different technologies for the development of phase shifter based on distributed MEMS and slow-wave transmission lines. The two types of transmission lines considered were the shielded-CoPlanar Stripline (S-CPS) and shielded-Coplanar Waveguide line (S-CPW). Three different technologies were studied: CMOS technology; the dedicated technology developed by the Laboratoire d\'électronique des technologies de l\'information (CEA-Leti) and the in-house technology developed at the Microelectronics Laboratory of the University of São Paulo. Using the CMOS technology, S-CPS-type transmission lines were fabricated using IHP\'s 250 nm CMOS technology and AMS\'s 0.35 µm CMOS technology. AMS\'s 0.35 µm technology has also been used for the development of 2-bit and 3-bit phase-shifters based on S-CPW type transmission lines. For these phase shifters, a reproducible shielding layer release process was defined that allowed the device to operate. Also, another phase shifter based in S-CPW-type transmission lines that were previously developed with dedicated CEA-LETI technology was electrostatically modeled using Comsol MultiPhysics and Ansys Workbench. The developed models allowed to understand the electromechanical behavior of the phase shifter and was used for a new design of the phase shifter with an optimized performance. Finally, in order to develop the optimized devices using the in-house technology with the materials and methods available at the USP Microelectronics Laboratory (LME-USP), some critical stages of the fabrication process were studied.
8

Tecnologias para defasadores baseados em MEMS e linhas de transmissão de ondas lentas. / Technologies for phase shifters based on MEMS and slow-wave transmission lines.

Bovadilla, Robert Aleksander Gavidia 05 July 2018 (has links)
O desenvolvimento deste trabalho foi motivado pela alta demanda de novas aplicações para o mercado do consumidor que necessitam de sistemas de transmissão e recepção de dados sem fio trabalhando na região de ondas milimétricas (mmW - entre 30 GHz e 300 GHz). Para estes tipos de sistemas, os defasadores são cruciais por definir o custo e o tamanho do dispositivo final. A pesquisa bibliográfica mostra que a melhor opção são os defasadores passivos do tipo linha carregada que utilizam Sistemas Microeletromecânicos (MEMS) como elemento de ajuste para a mudança de fase. Por esse motivo neste trabalho foi feito o estudo de diferentes tecnologias para o desenvolvimento de defasadores baseados em MEMS distribuídos e linhas de transmissão com efeito de ondas lentas de tipo shielded-CoPlanar Stripline (S-CPS) e shielded-Coplanar Waveguide (S-CPW). Foram estudadas três diferentes tecnologias: a tecnologia CMOS; a tecnologia dedicada desenvolvida pelo Laboratoire d\'électronique des technologies de l\'information (CEA-Leti) e a tecnologia in-house desenvolvida no Laboratório de Microeletrônica da Universidade de São Paulo. Utilizando a tecnologia CMOS foram fabricadas linhas de transmissão de tipo S-CPS utilizando a tecnologia de 250 nm da IHP (Innovations for High Performance Microelectronics) e a tecnologia de 0,35 µm da AMS (Austria Micro Systems). A tecnologia de 0,35 µm da AMS foi utilizada também para o desenvolvimento de defasadores de 2-bits e 3-bits baseados em linhas de transmissão de tipo S-CPW. Para estes defasadores foi definido um processo de liberação da camada de blindagem, reprodutível, que permitiu a atuação do dispositivo. Outros defasadores baseados em S-CPW que foram desenvolvidos anteriormente com a tecnologia dedicada CEA-LETI, foram modelados eletrostaticamente utilizando o Comsol MultiPhysics e o Ansys Workbench. Os modelos desenvolvidos permitiram entender o comportamento eletromecânico do defasador e foram utilizados reprojetar o defasador com um desempenho otimizado. Finalmente, visando o desenvolvimento dos dispositivos otimizados utilizando a tecnologia in house com os materiais e métodos disponíveis no Laboratório de Microeletrônica da USP (LME-USP), foram estudadas algumas etapas críticas do processo de fabricação. / The development of this work is motivated by the high demand for new applications for the consumer market that require wireless systems for data transmission and reception working in the millimeter wave region (mmW - between 30 GHz and 300 GHz). For these kinds of systems, the phase shifter are crucial to define the cost and size of the final device. The bibliographical research shows that the best option are the passive load line-type phase shifters using Microelectromechanical Systems (MEMS) as tuning element. Therefore, in this work, the study of different technologies for the development of phase shifter based on distributed MEMS and slow-wave transmission lines. The two types of transmission lines considered were the shielded-CoPlanar Stripline (S-CPS) and shielded-Coplanar Waveguide line (S-CPW). Three different technologies were studied: CMOS technology; the dedicated technology developed by the Laboratoire d\'électronique des technologies de l\'information (CEA-Leti) and the in-house technology developed at the Microelectronics Laboratory of the University of São Paulo. Using the CMOS technology, S-CPS-type transmission lines were fabricated using IHP\'s 250 nm CMOS technology and AMS\'s 0.35 µm CMOS technology. AMS\'s 0.35 µm technology has also been used for the development of 2-bit and 3-bit phase-shifters based on S-CPW type transmission lines. For these phase shifters, a reproducible shielding layer release process was defined that allowed the device to operate. Also, another phase shifter based in S-CPW-type transmission lines that were previously developed with dedicated CEA-LETI technology was electrostatically modeled using Comsol MultiPhysics and Ansys Workbench. The developed models allowed to understand the electromechanical behavior of the phase shifter and was used for a new design of the phase shifter with an optimized performance. Finally, in order to develop the optimized devices using the in-house technology with the materials and methods available at the USP Microelectronics Laboratory (LME-USP), some critical stages of the fabrication process were studied.

Page generated in 0.0434 seconds