• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Credit risk measurement model for small and medium enterprises : the case of Zimbabwe

Dambaza, Marx January 2020 (has links)
Abstracts in English, Zulu and Southern Sotho / The advent of Basel II Capital Accord has revolutionised credit risk measurement (CRM) to the extent that the once “perceived riskier bank assets” are now accommodated for lending. The Small and Medium Enterprise (SME) sector has been traditionally perceived as a riskier and unprofitable asset for lending activity by Commercial Banks, in particular. But empirical studies on the implementation of the Basel II internal-ratings-based (IRB) framework have demonstrated that SME credit risk is measurable. Banks are still finding it difficult to forecast SME loan default and to provide credit to the sector that meet Basel’s capital requirements. The thesis proposes to construct an empirical credit risk measurement (CRM) model, specifically for SMEs, to ameliorate the adverse effects of SME credit inaccessibility due to high information asymmetry between financial institutions (FI) and SMEs in Zimbabwe. A well-performing and accurate CRM helps FIs to control their risk exposure through selective granting of credit based on a thorough statistical analysis of historical customer data. This thesis develops a CRM model, built on a statistically random sample, known-good-bad (KGB) sample, which is a better representation of the through-the-door (TTD) population of SME loan applicants. The KGB sample incorporates both accepted and rejected applications, through reject inference (RI). A model-based bound and collapse (BC) reject inference methodology was empirically used to correct selectivity bias inherent in CRM domain. The results have shown great improvement in the classification power and aggregate supply of credit supply to the SME portfolio of the case-studied bank, as evidenced by substantial decrease of bad rates across models developed; from the preliminary model to final model designed for the case-studied bank. The final model was validated using both bad rate, confusion matrix metrics and Area under Receiver Operating Characteristic (AUROC) curve to assess the classification power of the model within-sample and out-of-sample. The AUROC for the final model (weak model) was found to be 0.9782 whilst bad rate was found to be 14.69%. There was 28.76% improvement in the bad rate in the final model in comparison with the current CRM model being used by the case-studied bank. / Isivumelwano seBasel II Capital Accord sesishintshe indlela yokulinganisa ubungozi bokunikezana ngesikweletu credit risk measurement (CRM) kwaze kwafika ezingeni lapho izimpahla ezazithathwa njengamagugu anobungozi “riskier bank assets” sezimukelwa njengesibambiso sokuboleka imali. Umkhakha wezamaBhizinisi Amancane naSafufusayo, phecelezi, Small and Medium Enterprise (SME) kudala uqondakala njengomkhakha onobungozi obukhulu futhi njengomkhakha ongangenisi inzuzo, ikakhulu njengesibambiso sokubolekwa imali ngamabhange ahwebayo. Kodwa izifundo zocwaningo ezimayelana nokusetshenziswa nokusetshenziswa kwesakhiwo iBasel II internal-ratings-based (IRB) sezikhombisile ukuthi ubungozi bokunikeza isikweletu kumabhizinisi amancane nasafufusayo (SME) sebuyalinganiseka. Yize kunjalo, amabhange asathola ukuthi kusenzima ukubona ngaphambili inkinga yokungabhadeleki kahle kwezikweletu kanye nokunikeza isikweletu imikhakha enemigomo edingekayo yezimali kaBasel. Lolu cwaningo beluphakamisa ukwakha uhlelo imodeli ephathekayo yokulinganisa izinga lobungozi bokubolekisa ngemali (CRM) kwihlelo lokuxhasa ngezimali ama-SME, okuyihlelo elilawulwa yiziko lezimali ezweni laseZimbabwe. Imodeli ye-CRM esebenza kahle futhi eshaya khona inceda amaziko ezimali ukugwema ubungozi bokunikezana ngezikweletu ngokusebenzisa uhlelo lokunikeza isikweletu ababoleki abakhethekile, lokhu kususelwa ohlelweni oluhlaziya amanani edatha engumlando wekhasimende. Imodeli ye-CRM ephakanyisiwe yaqala yakhiwa ngohlelo lwamanani, phecelezi istatistically random sample, okuluphawu olungcono olumele uhlelo lwe through-the-door (TTD) population lokukhetha abafakizicelo zokubolekwa imali bama SME, kanti lokhu kuxuba zona zombili izicelo eziphumelele kanye nezingaphumelelanga. Indlela yokukhetha abafakizicelo, phecelezi model-based bound-and-collapse (BC) reject-inference methodology isetshenzisiwe ukulungisa indlela yokukhetha ngokukhetha ngendlela yokucwasa kwisizinda seCRM. Imiphumela iye yakhombisa intuthuko enkulu mayelana namandla okwehlukanisa kanye nokunikezwa kwezikweletu kuma SME okungamamabhange enziwe ucwaningo lotho., njengoba lokhu kufakazelwa ukuncipha okukhulu kwe-bad rate kuwo wonke amamodeli athuthukisiwe. Imodeli yokuqala kanye neyokugcina zazidizayinelwe ibhange. Imodeli yokugcina yaqinisekiswa ngokusebenzisa zombili indlela isikweletu esingagculisi kanye negrafu ye-Area under Receiver Operating Characteristic (AUROC) ukulinganisa ukwehlukaniswa kwamandla emodeli engaphakathi kwesampuli nangaphandle kwesampuli. Uhlelo lwe-AUROC lwemodeli yokugcina (weak model) lwatholakala ukuthi luyi 0.9782, kanti ibad rate yatholakala ukuthi yenza i-14.69%. Kwaba khona ukuthuthuka nge-28.76% kwi-bad rate kwimodeli yokugcina uma iqhathaniswa nemodeli yamanje iCRM model ukuba isetshenziswe yibhange elithile. / Basel II Capital Accord e fetotse tekanyo ya kotsi ya mokitlane (credit risk measurement (CRM)) hoo “thepa e kotsi ya dibanka” ka moo e neng e bonwa ka teng, e seng e fuwa sebaka dikadimong. Lekala la Dikgwebo tse Nyane le tse Mahareng (SME) le bonwa ka tlwaelo jwalo ka lekala le kotsi e hodimo le senang ditswala bakeng sa ditshebetso tsa dikadimo haholo ke dibanka tsa kgwebo. Empa dipatlisiso tse thehilweng hodima se bonweng kapa se etsahetseng tsa tshebetso ya moralo wa Basel II internal-ratings-based (IRB) di supile hore kotsi ya mokitlane ya SME e kgona ho lekanngwa. Leha ho le jwalo, dibanka di ntse di thatafallwa ke ho bonelapele palo ya ditlholeho tsa ho lefa tsa diSME le ho fana ka mokitla lekaleng leo le kgotsofatsang ditlhoko tsa Basel tsa ditjhelete. Phuputso ena e ne sisinya ho etsa tekanyo ya se bonwang ho mmotlolo wa kotsi ya mokitlane (CRM) tshebetsong ya phano ya tjhelete ya diSME e etswang ke setsi sa ditjhelete (FI) ho la Zimbabwe. Mmotlolo o sebetsang hantle hape o fanang ka dipalo tse nepahetseng o dusa diFI hore di laole pepeso ya tsona ho kotsi ka phano e kgethang ya mokitlane, e thehilweng hodima manollo ya dipalopalo ya dintlha tsa histori ya bareki. Mmotlolo o sisingwang wa CRM o hlahisitswe ho tswa ho sampole e sa hlophiswang, e leng pontsho e betere ya setjhaba se ikenelang le monyako (TTD) ya batho bao e kang bakadimi ba tjhelete ho diSME, hobane e kenyelletsa bakopi ba amohetsweng le ba hannweng. Mokgwatshebetso wa bound-and-collapse (BC) reject-inference o kentswe tshebetsong ho nepahatsa tshekamelo ya kgetho e leng teng ho lekala la CRM. Diphetho tsena di bontshitse ntlafalo e kgolo ho matla a tlhophiso le palohare ya phano ya mokitlane ho diSME tsa banka eo ho ithutilweng ka yona, jwalo ka ha ho pakilwe ke ho phokotseho ya direite tse mpe ho pharalla le dimmotlolo tse hlahisitsweng. Mmotlolo wa ho qala le wa ho qetela e ile ya ralwa bakeng sa banka. Mmotlolo wa ho qetela o ile wa netefatswa ka tshebediso ya bobedi reite e mpe le mothinya wa Area under Receiver Operating Characteristic (AUROC) ho lekanya matla a kenyo mekgahlelong a mmotlolo kahare ho sampole le kantle ho yona. AUROC bakeng sa mmotlo wa ho qetela (mmotlolo o fokotseng) e fumanwe e le 0.9782, ha reite e mpe e fumanwe e le 14.69%. Ho bile le ntlafalo ya 28.76% ho reite e mpe bakeng sa mmotlolo wa ho qetela ha ho bapiswa le mmotlolo wa CRM ha o sebediswa bankeng yona eo. / Graduate School of Business Leadership / D.B.L.
2

Managing multi-grade teaching for optimal learning in Gauteng West primary schools

Tredoux, Marlise 01 1900 (has links)
The researcher investigated the management of multi-grade teaching for optimal learning in Gauteng West primary schools. Ten participants, including school principals, heads of departments and educators participated in individual and focus group interviews and in observation of multi-grade classroom contexts. Findings revealed that educators involved in multi-grade teaching feel overwhelmed by challenging work conditions pertaining to large learner numbers and a lack of adequate didactical resources. This is exacerbated by a lack of professional development by means of tailor-made training for multi-grade teaching and the presumption that educators teaching such classes must merely change the monograde teaching format of the curriculum themselves for applicable implementation in a multi-grade teaching context. This leaves educators socially, emotionally and professionally isolated. Recommendations include the involvement of seasoned educators with expert knowledge and experience of multi-grade teaching to present training sessions constituting advice and support to inexperienced educators involved in said teaching. / Die navorser het die bestuur van meergraadonderrig by laerskole in Wes-Gauteng vir optimale leer ondersoek. Afgesien van individuele en fokusgroeponderhoude met skoolhoofde, departementshoofde en opvoeders, is waarneming in meergraadklaskamers gedoen. Volgens die bevindings bemoeilik groot klasse en ʼn gebrek aan didaktiese hulpmiddels meergraadopvoeders se taak. Meergraadopvoeders voel hulle geensins opgewasse teen hierdie werksomstandighede nie. ʼn Gebrek aan opleiding in meergraadonderrig en die veronderstelling dat opvoeders die eengraadformaat van die kurrikulum in ʼn meergraadformaat kan omskakel, vererger sake. Opvoeders is van mening dat hulle maatskaplik, emosioneel en professioneel in die steek gelaat word. Daar word aanbeveel dat gesoute opvoeders met kennis van en ervaring in meergraadonderrig onervare opvoeders oplei en adviseer. / Monyakisisi o dirile dinyakisiso ka ga go ruta dikereiti tse fapanego go fihlelela bokgoni le tsebo tikologong ya go thekga dinyakwa tsa baithuti dikolong tsa phoraemari go la Gauteng Bodikela. Batseakarolo ba lesome, go akaretswa dihlogo tsa dikolo, dihlogo tsa dikgoro le barutisi ba tseere karolo ditherisanong ka botee le dihlopha tseo di nepisitswego gape le temogo dikemong tsa diphaposi tsa dikereiti tse di fapanego. Dikhwetso di utollotse gore barutisi bao ba rutago dikereiti tse fapanego ba imelwa ke maemo a modiro wo o nyakago gore ba ntshe bokgoni bja bona ka moka ka lebaka la dipalo tse ntsi tsa baithuti le tlhokego ya dithusi tsa thuto tse di lekanego. Se se thatafiswa ke tlhokego ya tlhabollo ya profesene ye ka go fa tlhahlo yeo e lebanego ya go ruta dikreiti tse fapanego le kgopolo ya go re barutisi bao ba rutago ba swanela go no fetola popego ya lenaneothuto la kereiti e tee ka bobona go re ba le dirise kemong ya go ruta dikereiti tse fapanego. Se se dira gore barutisi ba ikhwetse ba se na kgokagano le setshaba leagong, ba hloka bao ba ka llelago go bona le go se be le bao ba nago le kgahlego go profesene ya bona. Ditshisinyo di akaretsa go ba gona ga barutisi bao e lego kgale ba ruta ba nago le maitemogelo le botsebi go ruta dikereiti tse fapanego go hlagisa dipaka tsa tlhahlo tseo di fago maele le thuso go barutisi bao ba se nago maitemogelo. / Educational Management and Leadership / M. Ed. (Education Management)

Page generated in 0.0195 seconds