• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 209
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 226
  • 219
  • 217
  • 217
  • 217
  • 217
  • 216
  • 209
  • 209
  • 209
  • 31
  • 23
  • 21
  • 19
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
161

Decentralized Estimation Under Communication Constraints

Uney, Murat 01 August 2009 (has links) (PDF)
In this thesis, we consider the problem of decentralized estimation under communication constraints in the context of Collaborative Signal and Information Processing. Motivated by sensor network applications, a high volume of data collected at distinct locations and possibly in diverse modalities together with the spatially distributed nature and the resource limitations of the underlying system are of concern. Designing processing schemes which match the constraints imposed by the system while providing a reasonable accuracy has been a major challenge in which we are particularly interested in the tradeoff between the estimation performance and the utilization of communications subject to energy and bandwidth constraints. One remarkable approach for decentralized inference in sensor networks is to exploit graphical models together with message passing algorithms. In this framework, after the so-called information graph of the problem is constructed, it is mapped onto the underlying network structure which is responsible for delivering the messages in accordance with the schedule of the inference algorithm. However it is challenging to provide a design perspective that addresses the tradeoff between the estimation accuracy and the cost of communications. Another approach has been performing the estimation at a fusion center based on the quantized information provided by the peripherals in which the fusion and quantization rules are sought while taking a restricted set of the communication constraints into account. We consider two classes of in-network processing strategies which cover a broad range of constraints and yield tractable Bayesian risks that capture the cost of communications as well as the penalty for estimation errors. A rigorous design setting is obtained in the form of a constrained optimization problem utilizing the Bayesian risks. These processing schemes have been previously studied together with the structures that the solutions exhibit in the context of decentralized detection in which a decision out of finitely many choices is made. We adopt this framework for the estimation problem. However, for the case, computationally infeasible solutions arise that involve integral operators that are impossible to evaluate exactly in general. In order not to compromise the fidelity of the model we develop an approximation framework using Monte Carlo methods and obtain particle representations and approximate computational schemes for both the in-network processing strategies and the solution schemes to the design problem. Doing that, we can produce approximating strategies for decentralized estimation networks under communication constraints captured by the framework including the cost. The proposed Monte Carlo optimization procedures operate in a scalable and efficient manner and can produce results for any family of distributions of concern provided that samples can be produced from the marginals. In addition, this approach enables a quantification of the tradeoff between the estimation accuracy and the cost of communications through a parameterized Bayesian risk.
162

Digital Modulation Recognition

Erdem, Erem 01 December 2009 (has links) (PDF)
In this thesis work, automatic recognition algorithms for digital modulated signals are surveyed. Feature extraction and classification algorithm stages are the main parts of a modulation recognition system. Performance of the modulation recognition system mainly depends on the prior knowledge of some of the signal parameters, selection of the key features and classification algorithm selection. Unfortunately, most of the features require some of the signal parameters such as carrier frequency, pulse shape, time of arrival, initial phase, symbol rate, signal to noise ratio, to be known or to be extracted. Thus, in this thesis, features which do not require prior knowledge of the signal parameters, such as the number of the peaks in the envelope histogram and the locations of these peaks, the number of peaks in the frequency histogram, higher order moments of the signal are considered. Particularly, symbol rate and signal to noise ratio estimation methods are surveyed. A method based on the cyclostationarity analysis is used for symbol rate estimation and a method based on the eigenvector decomposition is used for the estimation of signal to noise ratio. Also, estimated signal to noise ratio is used to improve the performance of the classification algorithm. Two methods are proposed for modulation recognition: 1) Decision tree based method 2) Bayesian based classification method A method to estimate the symbol rate and carrier frequency offset of minimum-shift keying (MSK) signal is also investigated.
163

Quantization Based Data Hiding Strategies With Visual Applications

Esen, Ersin 01 February 2010 (has links) (PDF)
The first explored area in this thesis is the proposed data hiding method, TCQ-IS. The method is based on Trellis Coded Quantization (TCQ), whose initial state selection is arbitrary. TCQ-IS exploits this fact to hide data. It is a practical multi-dimensional that eliminates the prohibitive task of designing high dimensional quantizers. The strength and weaknesses of the method are stated by various experiments. The second contribution is the proposed data hiding method, Forbidden Zone Data Hiding (FZDH), which relies on the concept of &ldquo / forbidden zone&rdquo / , where host signal is not altered. The main motive of FZDH is to introduce distortion as much as needed, while keeping a range of host signal intact depending on the desired level of robustness. FZDH is compared against Quantization Index Modulation (QIM) as well as DC-QIM and ST-QIM. FZDH outperforms QIM even in 1-D and DC-QIM in higher dimensions. Furthermore, FZDH is comparable with ST-QIM for certain operation regimes. The final contribution is the video data hiding framework that includes FZDH, selective embedding and Repeat Accumulate (RA) codes. De-synchronization due to selective embedding is handled with RA codes. By means of simple rules applied to the embedded frame markers, certain level of robustness against temporal attacks is introduced. Selected coefficients are used to embed message bits by employing multi-dimensional FZDH. The framework is tested with typical broadcast material against common video processing attacks. The results indicate that the framework can be utilized in real life applications.
164

Planar Array Structures For Two-dimensional Direction-of-arrival Estimation

Filik, Tansu 01 May 2010 (has links) (PDF)
In this thesis, two-dimensional (2-D) direction-of-arrival (DOA) estimation problem is considered. Usually, DOA estimation is considered in one dimension assuming a fixed elevation angle. While this assumption simplifies the problem, both the azimuth and elevation angles, namely, the 2-D DOA estimates are required in practical scenarios. In this thesis, planar array structures are considered for 2-D DOA estimation. In this context, V-shaped arrays are discussed and some of the important features of these arrays are outlined. A new method for the design of V-shaped arrays is presented for both isotropic and directional beam patterns. The design procedure is simple and can be applied for both uniform and nonuniform V-shaped sensor arrays. Closed form expressions are presented for the V-angle in order to obtain isotropic angle performance. While circular arrays have the isotropic characteristics, V-shaped arrays present certain advantages due to their large aperture for the same number of sensors and inter-sensor distance. The comparison of circular and V-shaped arrays is done by considering the azimuth and elevation Cramer-Rao Bounds (CRB). It is shown that V-shaped and circular arrays have similar characteristics for the sensor position errors while the uniform isotropic (UI) V-array performs better when there is mutual coupling and the sources are correlated. In the literature, there are several techniques for 2-D DOA estimation. Usually, fast algorithms are desired for this purpose since a search in two dimensions is a costly process. These algorithms have a major problem, namely, the pairing of the azimuth-elevation couples for multiple sources. In this thesis, a new fast and effective technique for this purpose is proposed. In this technique, a virtual array output is generated such that when the ESPRIT algorithm is used, the eigenvalues of the rotational transformation matrix have the 2-D angle information in both magnitude and phase. This idea is applied in different scenarios and three methods are presented for these cases. In one case, given an arbitrary array structure, array interpolation is used to generate the appropriate virtual arrays. When the antenna mutual coupling is taken into account, a special type of array structure, such as circular, should be used in order to apply the array interpolation. In general, the array mutual coupling matrix (MCM) should have a symmetric Toeplitz form. It is shown that the 2-D DOA performance of the proposed method approaches to the CRB by using minimum number of antennas in case of mutual coupling. This method does not require the estimation of the mutual coupling coefficients. While this technique is effective, it has problems especially when the number of sources increases. In order to improve the performance, MCM is estimated in the third approach. This new approach performs better, but it cannot be used satisfactorily in case of multipath signals. In this thesis, the proposed idea for fast 2-D DOA estimation is further developed in order to solve the problem when mutual coupling and multipath signals jointly exist. In this case, real arrays with some auxiliary sensors are used to generate a structured mutual coupling matrix. It is shown that the problem can be effectively solved when the array structure has a special form. Specifically, parallel uniform linear arrays (PULA) are employed for this purpose. When auxiliary sensors are used, a symmetric banded Toeplitz MCM is obtained for the PULA. This allows the application of spatial smoothing and ESPRIT algorithm for 2-D DOA estimation. The proposed algorithm uses triplets and presents closed form paired 2-D DOA estimates in case of unknown mutual coupling and multipath signals. Several simulations are done and it is shown that the proposed array structure and the method effectively solve the problem.
165

Code Aided Frame Synchronization For Frequency Selective Channels

Ekinci, Umut Utku 01 May 2010 (has links) (PDF)
Frame synchronization is an important problem in digital communication systems. In frame synchronization, the main task is to find the frame start given the flow of the communication symbols. In this thesis, frame synchronization problem is investigated for both additive white Gaussian noise (AWGN) channels and frequency selective channels. Most of the previous works on frame synchronization consider the simple case of AWGN channels. The algorithms developed for this purpose fail in frequency selective channels. There is limited number of algorithms proposed for the frequency selective channels. In this thesis, existing frame synchronization techniques are investigated for both AWGN and frequency selective channels. Code-aided frame synchronization techniques are combined with the methods for frequency selective channels. Mainly two types of code-aided frame synchronization schemes are considered and two new system structures are proposed for frame synchronization. One of the proposed structures performs better than the alternative methods for frequency selective channels. The overall system for this new synchronizer is composed of a list synchronizer which generates the possible frame starts, a channel estimator, a soft output MLSE equalizer, and a soft output Viterbi decoder. A mode separation algorithm is used to generate the statistics for the selection of the true frame start. Several experiments are done and the performance is outlined for a variety of scenarios.
166

Space-time Codes

Karacayir, Murat 01 June 2010 (has links) (PDF)
The phenomenon of fading constitutes a fundamental problem in wireless communications. Researchers have proposed many methods to improve the reliability of communication over wireless channels in the presence of fading. Many studies on this topic have focused on diversity techniques. Transmit diversity is a common diversity type in which multiple antennas are employed at the transmitter. Space-time coding is a technique based on transmit diversity introduced by Tarokh et alii in 1998. In this thesis, various types of space-time codes are examined. Since they were originally introduced in the form of trellis codes, a major part is devoted to space-time trellis codes where the fundamental design criteria are established. Then, space-time block coding, which presents a different approach, is introduced and orthogonal spacetime block codes are analyzed in some detail. Lastly, rank codes from coding theory are studied and their relation to space-time coding are investigated.
167

Comparison And Evaluation Of Three Dimensional Passive Source Localization Techniques

Batuman, Emrah 01 June 2010 (has links) (PDF)
Passive source localization is the estimation of the positions of the sources or emitters given the sensor data. In this thesis, some of the well known methods for passive source localization are investigated and compared in a stationary emitter sensor framework. These algorithms are discussed in detail in two and three dimensions for both single and multiple target cases. Passive source localization methods can be divided into two groups as two-step algorithms and single-step algorithms. Angle-of-Arrival (AOA) based Maximum Likelihood (ML) and Least Squares (LS) source localization algorithms, Time- Difference-of-Arrival (TDOA) based ML and LS methods, AOA-TDOA based hybrid ML methods are presented as conventional two step techniques. Direct Position Determination (DPD) method is a well known technique within the single step approaches. In thesis, a number of variants of DPD technique with better computational complexity (the proposed methods do not need eigen-decomposition in the grid search) are presented. These are the Direct Localization (DL) with Multiple Signal Classification (MUSIC), DL with Deterministic ML (DML) and DL with Stochastic ML (SML) methods. The evaluation of these algorithms is done by considering the Cramer Rao Lower Bound (CRLB). Some of the CRLB expressions given in two dimensions in the literature are presented for threedimensions. Extensive simulations are done and the effects of different parameters on the performances of the methods are investigated. It is shown that the performance of the single step algorithms is good even at low SNR. DL with MUSIC algorithm performs as good as the DPD while it has significant savings in computational complexity. AOA, TDOA and hybrid algorithms are compared in different scenarios. It is shown that the improvement achieved by single-step techniques may be acceptable when the system cost and complexity are ignored. The localization algorithms are compared for the multiple target case as well. The effect of sensor deployments on the location performance is investigated.
168

Mobile Ad Hoc Molecular Nanonetworks

Guney, Aydin 01 June 2010 (has links) (PDF)
Recent developments in nanotechnology have enabled the fabrication of nanomachines with very limited sensing, computation, communication, and action capabilities. The network of communicating nanomachines is envisaged as nanonetworks that are designed to accomplish complex tasks such as drug delivery and health monitoring. For the realization of future nanonetworks, it is essential to develop novel and efficient communication and networking paradigms. In this thesis, the first step towards designing a mobile ad hoc molecular nanonetwork (MAMNET) with electrochemical communication is taken. MAMNET consists of mobile nanomachines and infostations that share nanoscale information using electrochemical communication whenever they have a physical contact with each other. In MAMNET, the intermittent connectivity introduced by the mobility of nanomachines and infostations is a critical issue to be addressed. In this thesis, an analytical framework that incorporates the effect of mobility into the performance of electrochemical communication among nanomachines is presented. Using the analytical model, numerical analysis for the performance evaluation of MAMNET is obtained. Results reveal that MAMNET achieves adequately high throughput performance to enable frontier nanonetwork applications with sufficiently low communication delay.
169

Wideband Phase Shifter For 6-18 Ghz Applications

Boyacioglu, Gokhan 01 June 2010 (has links) (PDF)
Phase shifters are common microwave circuit devices, which are widely used in telecommunication and radar applications, microwave measurement systems, and many other industrial applications. They are key circuits of T/R modules and are used to form the main beam of the electronically scanned phase array antennas. Wideband operating range is an important criterion for EW applications. Hence, wideband performance of the phase shifter is also important. In this study, four wideband phase shifter circuits are designed, fabricated and measured for 6-18 GHz frequency range. Phase shifters are separately designed in order to get 11.25, 22.5, 45 and 90&ordm / phase shifts with minimum phase error and low return losses. Phase shifter circuits are designed and fabricated in microstrip structure onto two different substrates as Rogers TMM10i and Alumina using printed circuit board and thin film production techniques, respectively. Also phase shifter circuits that include microstrip spiral inductors for DC biasing are designed and fabricated using thin film production technique. For each design the fabricated circuits are measured and results are compared with simulation results in the content of this thesis. Circuit designs and EM simulations are performed by using ADS2008&reg / , Sonnet&reg / , and CST&reg / .
170

Design And Realization Of Broadband Instantaneous Frequency Discriminator

Pamuk, Gokhan 01 June 2010 (has links) (PDF)
In this thesis, RF sections of a multi tier instantaneous frequency measurement (IFM) receiver which can operate in 2 &ndash / 18 GHz frequency band is designed, simulated and partially realized. The designed structure uses one coarse tier, three medium tiers and one fine tier for frequency discrimination. A novel reflective phase shifting technique is developed which enables the design of very wideband phase shifters using stepped cascaded transmission lines. Compared to the classical phase shifters using coupled transmission lines, the new approach came out to be much easier to design and fabricate with much better responses. This phase shifting technique is used in coarse and medium tiers. In fine frequency measurement tier, I/Q discriminator approach is used because reflective phase shifters would necessitate unacceptably long delay lines. Two I/Q discriminators are designed and fabricated using Lange directional couplers that operate in 2-6 GHz and 6-18 GHz, resulting in satisfactory response. Additionally, 6 GHz HP and 6 GHz LP distributed filters are designed and fabricated to be used for these I/Q discriminators in fine tier. In order to eliminate possible ambiguities in coarse tier, a distributed element LP-HP diplexer with 10 GHz crossover frequency is designed and fabricated successfully to be used for splitting the frequency spectrum into 2-10 GHz and 10-18 GHz to ease the design and realization problems. Three power dividers operating in the ranges 2-18 GHz, 2-6 GHz and 6-18 GHz are designed for splitting incoming signals into different branches. All of these dividers are also fabricated with satisfactory response. The fabricated components are all compact and highly reproducible. The designed IFM can tolerate 48 degrees phase margin for resolving ambiguity in the tiers while special precautions are taken in fine tier to help ambiguity resolving process also. The resulting IFM provides a frequency resolution below 1 MHz in case of using an 8-bit sampler with a frequency accuracy of 0.28 MHz rms for 0 dB input SNR and 20 MHz video bandwidth.

Page generated in 0.0784 seconds