• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

TOWARDS IMPROVING TELETACTION IN TELEOPERATION TASKS USING VISION-BASED TACTILE SENSORS

Oscar Jia Jun Yu (18391263) 01 May 2024 (has links)
<p dir="ltr">Teletaction, the transmission of tactile feedback or touch, is a crucial aspect in the</p><p dir="ltr">field of teleoperation. High-quality teletaction feedback allows users to remotely manipulate</p><p dir="ltr">objects and increase the quality of the human-machine interface between the operator and</p><p dir="ltr">the robot, making complex manipulation tasks possible. Advances in the field of teletaction</p><p dir="ltr">for teleoperation however, have yet to make full use of the high-resolution 3D data provided</p><p dir="ltr">by modern vision-based tactile sensors. Existing solutions for teletaction lack in one or more</p><p dir="ltr">areas of form or function, such as fidelity or hardware footprint. In this thesis, we showcase</p><p dir="ltr">our research into a low-cost teletaction device for teleoperation that can utilize the real-time</p><p dir="ltr">high-resolution tactile information from vision-based tactile sensors, through both physical</p><p dir="ltr">3D surface reconstruction and shear displacement. We present our device, the Feelit, which</p><p dir="ltr">uses a combination of a pin-based shape display and compliant mechanisms to accomplish</p><p dir="ltr">this task. The pin-based shape display utilizes an array of 24 servomotors with miniature</p><p dir="ltr">Bowden cables, giving the device a resolution of 6x4 pins in a 15x10 mm display footprint.</p><p dir="ltr">Each pin can actuate up to 3 mm in 200 ms, while providing 80 N of force and 3 um of</p><p dir="ltr">depth resolution. Shear displacement and rotation is achieved using a compliant mechanism</p><p dir="ltr">design, allowing a minimum of 1 mm displacement laterally and 10 degrees of rotation. This</p><p dir="ltr">real-time 3D tactile reconstruction is achieved with the use of a vision-based tactile sensor,</p><p dir="ltr">the GelSight, along with an algorithm that samples the depth data and marker tracking to</p><p dir="ltr">generate actuator commands. With our device we perform a series of experiments including</p><p dir="ltr">shape recognition and relative weight identification, showing that our device has the potential</p><p dir="ltr">to expand teletaction capabilities in the teleoperation space.</p>

Page generated in 0.1052 seconds