• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 55
  • 8
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 92
  • 92
  • 13
  • 11
  • 11
  • 10
  • 8
  • 7
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Thermal profiles in oxygen vacuum swing adsorption (VSA)modelling, observations and optimisation

Wilson, Simon J January 2001 (has links)
Abstract not available
62

Thermal Metrology of Polysilicon MEMS using Raman Spectroscopy

Abel, Mark Richard 18 July 2005 (has links)
The development of microscale and nanoscale devices has outpaced the development of metrology tools necessary for their complete characterization. In the area of thermal MEMS technology, accurate measurements across a broad range of temperatures with high spatial resolution are not trivial. Thermal MEMS are devices in which the control and manipulation of temperature is necessary to perform a desired function, and are used in actuation, chemical sensing, nanolithography, thermal data storage, biological reactions and power generation. In order to properly design for reliability and performance issues amongst these devices and verify modeling accuracy, the temperature distribution under device operating conditions must be experimentally determined. Raman spectroscopy provides absolute temperature measurements with spatial scales below 1 micron, which is sufficient for most MEMS devices. In this work, a detailed study of Raman spectroscopy as an optical thermal metrology tool was performed. It is shown that a calibration of the Stokes shift with temperature yields a linear calibration for measurements up to 1000?n polysilicon. These coefficients were determined for polysilicon processed under various conditions (575-620?B and P doping) to assess the effects of microstructural variations on Raman spectra. The Stokes peak was also shown to shift linearly with an applied pure bending stress. In order to make stress-independent thermometry measurements, the ratio of the Stokes to anti-Stokes signal intensities and the Stokes linewidth were calibrated over the same temperature range. Using the calibration data, Raman spectroscopy was implemented for the evaluation of temperature of thermal MEMS. Heated AFM cantilevers and micro-beam heaters were chosen due to their wide range of applications. Different thermal and mechanical boundary conditions were considered by studying both the beams and cantilevers, resulting in varying levels of thermal stress. By using the three calibrations in a complementary fashion, the validity of Raman thermometry was explored. Device temperatures of up to 650?nd their corresponding uncertainties were found, and used to verify FEA modeling. Effects of thermally induced stresses were taken into account and analyzed. Possible uncertainties such as laser heating, spatial and spectral resolution, light collection efficiency, measurement uncertainty, and instrumental drift were reported and elucidated.
63

Serpentinization-assisted deformation processes and characterization of hydrothermal fluxes at mid-ocean ridges

Genc, Gence 03 April 2012 (has links)
Seafloor hydrothermal systems play a key role in Earth fs energy and geochemical budgets. They also support the existence and development of complex chemosynthetic biological ecosystems that use the mineral-laden fluids as a source of energy and nutrients. This dissertation focuses on two inter-related topics: (1) heat output and geochemical fluxes at mid-ocean ridges, and (2) structural deformation of oceanic lithosphere related to subsurface serpentinization in submarine settings. The determination of heat output is important for several reasons. It provides important constraints on the physics of seafloor hydrothermal processes, on the nature of the heat sources at mid-ocean ridges, and on nutrient transport to biological ecosystems. Despite its importance, measurements of hydrothermal heat outputs are still scarce and cover less than 5% of active hydrothermal vent sites. In this work, we report development of two new devices designed to measure fluid flow velocities from the submersible at temperatures of up to 450 C and depths 5,000 m. By using these instruments on 24 Alvin dives, new measurements of hydrothermal heat output have been conducted at the Juan de Fuca Ridge, including first measurements from the High Rise and Mothra hydrothermal fields. The collected data suggest that the high-temperature heat output at the Main Endeavour Field (MEF) may be declining since the 1999 eruption. The flow measurement results, coupled with in-situ geochemical measurements, yielded the first estimates of geochemical fluxes of volatile compounds at MEF and Mothra. Our findings indicate that geochemical flux from diffuse flows may constitute approximately half of the net geochemical flux from Juan de Fuca Ridge. It has recently been recognized that serpentinization of mantle peridotites, due to its exothermic nature, may be a mechanism contributing to the heat output at mid-ocean ridges. The tectonic response of the crust to serpentinization of extensively distributed peridotites at mid-ocean ridges and subduction zones could provide a means of characterizing serpentinized regions in the oceanic lithosphere. These regions are often associated with surface topographic anomalies that may result from the volume expansion caused by the serpentinization reactions. Although there is a clear correlation between tectonics and serpentinization, the link is complex and still not understood. In this dissertation, we calculated the transformation strain and surface uplift associated with subsurface serpentinization of variously shaped ultramafic inclusions. Application of the results to explain the anomalous topographic salient at the TAG hydrothermal field (Mid-Atlantic Ridge) suggests that this feature may result from a serpentinized body beneath the footwall of a detachment fault. Because the depth of the potential serpentinized region appears to be more than 1.5 times the size of the inclusion, the uplift profile is relatively insensitive to the exact location or shape of the serpentinized domain. The rate of exothermic heat release needed to produce the serpentinized volume may contribute to the ongoing diffuse flow. Application of the results to an uplift feature associated with the Kyushu ]Palau subduction zone in the western Pacific, shows that approximately 3% transformational strain in an inclined serpentinized region of the mantle wedge near the subducted Kyushu ]Palau Ridge may result in the observed uplift on the Miyazaki Plain. Using the uplift data may help to constrain the level of the subsurface serpentinization.
64

An investigation of spatial and temporal variability in several of Montana's reference streams working toward a more holistic management strategy /

Makarowski, Kathryn Elizabeth. January 2009 (has links)
Thesis (MS)--University of Montana, 2009. / Title from author supplied metadata. Includes bibliographical references.
65

Temperature prediction model for a producing horizontal well

Dawkrajai, Pinan 28 August 2008 (has links)
Not available / text
66

The melting point and viscosity of nickel smelter slags

Ducret, Andrew Charles Unknown Date (has links) (PDF)
Western Mining Corporation produces nickel matte at the Kalgoorlie Nickel Smelter(KNS)from nickel sulphide concentrates within an integrated flash smelter.
67

Retrograde cation exchange in garnets during slow cooling of mid crustal granulites and the P-T-t trajectories from the Mont Laurier region, Grenville province, Québec /

Boggs, Katherine, January 1996 (has links)
Mémoire (M.Sc.T.)--Université du Québec à Chicoutimi, 1996. / Document électronique également accessible en format PDF. CaQCU
68

The Influence of Ambient Temperature on Green Roof R-values

Cox, Bryce Kevin 01 January 2010 (has links)
Green roofs can be an effective and appealing way to increase the energy efficiency of buildings by providing active insulation. As plants in the green roof transpire, there is a reduction in heat flux that is conducted through the green roof. The R-value, or thermal resistance, of a green roof is an effective measurement of thermal performance because it can be easily included in building energy calculations applicable to many different buildings and situations. The purpose of this study was to determine if an increase in ambient temperature would cause an increase in the R-value of green roofs. Test trays containing green roof materials were tested in a low speed wind tunnel equipped to determine the R-value of the trays. Three different plant species were tested in this study, ryegrass (Lolium perenne), sedum (Sedum hispanicum), and vinca (Vinca minor). For each test in this study the relative humidity was maintained at 45% and the soil was saturated with water. The trays were tested at four different ambient temperatures, ranging from room temperature to 120ºF. The resulting R-values for sedum ranged from 1.37 to 3.28 ft²h°F/BTU, for ryegrass the R-values ranged from 2.15 to 3.62 ft²h°F/BTU, and for vinca the R-values ranged from 3.15 to 5.19 ft²h°F/BTU. The average R-value for all the tests in this study was 3.20 ft²h°F/BTU. The results showed an increase in R-value with increasing temperature. Applying an ANOVA analysis to the data, the relationship between temperature and R-value for all three plant species was found to be statistically significant.
69

An Experimental Investigation of the Relationship between Flow Turbulence and Temperature Fields in Turbulent Non-premixed Jet Flames

McManus, Thomas Andrew 02 October 2019 (has links)
No description available.
70

A Radar Interrogator For Wireless Passive Temperature Sensing

Lambert, Jeffrey Charles 01 January 2011 (has links)
In this thesis I explore radio detection and ranging (RADAR) and software defined radio (SDR) in the context of wireless passive sensor interrogation. A RADAR topology is selected based upon preliminary measurements using ordinary laboratory instrumentation and then used for construction of a prototype X-band wireless measurement system using commercial, off-theshelf (COTS) components. This research explores the feasibility of wireless passive sensor interrogation through practical application of SDR and RADAR techniques to the interrogation of a wireless passive resonator signal. This work serves as a foundation for further research on sensor interrogation through establishment of critical system parameters in the design of wireless measurement systems.

Page generated in 0.0856 seconds