• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Self-Assembly, Templation and Biomimetics

Li, Xuehe 20 December 2002 (has links)
Self-assembly, templation and biomimetics are three important, overlapping areas in supramolecularChemistry. Some contributions to these three areas are introduced. Novel substituted trispyridylmethanol derived ligands were synthesized to mimic the active site of carbonic anhydrase. The key two-step process in constructing the trispyridylmethanol core structure is proven to be more efficient than the traditional one-step synthesis. Self-assembly is a very efficient way to form nanoscale structure from relatively simple subunits. Tetraphenylmethane-based subunits were synthesized. The result of self-assembly reactions demonstrated the formation of 1~3 nm sized molecules in one step. Potential multi-generation self-assembly on this subunit is also discussed. A novel and efficient approach for the synthesis of large aromatic crown ethers, using resorcinarenes as templates, has been developed. This simple threestep process generated a new family of aromatic crown ethers in up to 50% overall yield. As intermediates from these three-step syntheses, a large variety of molecular "baskets", which have been shown to be excellent hosts for adamantanes, have also been obtained.
2

Anion-templated synthesis of functional interlocked architectures

Hancock, Laura M. January 2011 (has links)
This thesis explores the use of anions in the design and construction of interlocked architectures for applications in anion recognition and sensing, and to function as molecular machines upon a given stimulus. Chapter One introduces the field of anionic supramolecular chemistry focusing on host-guest chemistry and directed self-assembly. A review of the recognition and sensing of anionic guest species is given before strategies for the construction of interlocked architectures are discussed, and the potential functions of these structures considered. Chapter Two details the development of a novel anion-templation route for the synthesis of macrocycles and rotaxanes. The versatility of this route in constructing new [2]rotaxanes is explored by varying several features of the macrocyclic component, with emphasis on creating the most powerful anion complexant. Proton NMR spectroscopy is used to probe the anion binding properties of the rotaxanes, and X-ray crystallography and MD simulations are used to rationalize anion binding trends. The possibility of synthesizing catenanes for anion recognition via this new synthetic route is also investigated. Chapter Three investigates the appendage of transition metal complexes to rotaxanes to create interlocked host architectures capable of sensing anions via luminescence spectroscopy. The incorporation of rhenium(I) and ruthenium(II) polypyridyl complexes into the macrocyclic and axle component of [2]rotaxanes are described, before the anion binding studies of these structures using ¹H NMR and luminescence spectroscopy are reported. Chapter Four describes the strategic synthesis of [2]rotaxanes designed to undergo molecular motion upon a given stimulus. Initially, the possibility of exploiting anions to stimulate the macrocyclic component of the [2]rotaxanes to translocate to a second station on the axle is investigated. The use of pyridine N-oxide as an integrated template for rotaxane formation is reported before the ability of these rotaxanes to undergo anion and pH driven molecular motion is explored. This chapter concludes with the construction of a calix[4]diquinone N-oxide containing [2]rotaxane capable of undergoing sodium- and barium-induced molecular pirouetting. Chapter Five provides synthetic procedures and characterisation details for compounds listed in this thesis. Chapter Six reports supplementary experimental information including titration protocols, X-ray crystal structures and MD simulations.
3

Structuring and functionalisation of titania : a thesis presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Chemistry at Massey University, Palmerston North, New Zealand

Ting, Yvonne PeeYee Unknown Date (has links)
Grätzel cells are liquid-electrolyte photoelectrochemical cells that contain dyesensitised titania electrodes. The sensitiser is typically an organic species that absorbs visible light and increases the spectral region in which Grätzel cells may produce electricity. A key feature in the success of Grätzel cells is the high surface area of nanostructured titania electrodes. In this study, the nanostructuring of titania has been explored by two complementary methods: templation and self-assembly. The templation of silica colloidal crystals (opals) was chosen as an inverse opal of titania would display a porous, bicontinuous structure in addition to a photonic bandgap. A diverse variety of titania inverse opals was produced, ranging from ideal ‘honeycomb’ to non-ideal ‘grape-like’ morphologies. However, the fragility of the material and difficulties in reproduction meant that the testing of such electrodes within Grätzel cells was limited. Study towards the formation of a nanoparticle superlattice of titania via chemically assisted self-assembly involved the investigation of both nanostructured titania surfaces and dye adsorption. The mode of dye binding to titania and the stability of adsorbed dyes was studied to aid work toward the design of a self-assembled titania superlattice, as well as to assist in the analysis of dye performance in Grätzel cells. Crystalline, aggregated titania and amorphous, dispersible titania was produced for dye binding studies of small organic carboxylic acid dyes. It was found that while dyes are adsorbed and intimately associated with titania, the mode of dye binding is different on a dry electrode than upon dispersed and solvated titania. The dyes appear to be bound to titania in a carboxylate form in the dry state, but in a mode that closer resembles that of the native dye upon dispersed titania.

Page generated in 0.1069 seconds